Cigna Medical Coverage Policy

Subject: Stem-Cell Transplantation for Myelofibrosis and Polycythemia Vera

Effective Date: 4/15/2017
Next Review Date: 4/15/2018
Coverage Policy Number: 0429

Table of Contents

Coverage Policy .. 1
General Background ... 1
Coding/Billing Information 5
References .. 7

Related Coverage Resources

Donor Lymphocyte Infusion
Stem-Cell Transplantation for Acute Myelogenous Leukemia
Transplantation Donor Charges
Umbilical Cord Blood Banking

INSTRUCTIONS FOR USE

The following Coverage Policy applies to health benefit plans administered by Cigna companies. Coverage Policies are intended to provide guidance in interpreting certain standard Cigna benefit plans. Please note, the terms of a customer's particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer's benefit plan document may contain a specific exclusion related to a topic addressed in a Coverage Policy. In the event of a conflict, a customer's benefit plan document always supersedes the information in the Coverage Policies. In the absence of a controlling federal or state coverage mandate, benefits are ultimately determined by the terms of the applicable benefit plan document. Coverage determinations in each specific instance require consideration of 1) the terms of the applicable benefit plan document in effect on the date of service; 2) any applicable laws/regulations; 3) any relevant collateral source materials including Coverage Policies and; 4) the specific facts of the particular situation. Coverage Policies relate exclusively to the administration of health benefit plans. Coverage Policies are not recommendations for treatment and should never be used as treatment guidelines. In certain markets, delegated vendor guidelines may be used to support medical necessity and other coverage determinations. Proprietary information of Cigna. Copyright ©2017 Cigna

Coverage Policy

Cigna covers allogeneic hematopoietic stem-cell transplantation (HSCT) from an appropriately-matched human leukocyte antigen (HLA) donor as medically necessary for the treatment of myelofibrosis, for symptoms that persist, or worsen despite standard supportive care.

Cigna does not cover autologous HSCT for the treatment of myelofibrosis because it is considered experimental, investigational or unproven.

Cigna does not cover hematopoietic stem-cell transplantation (HSCT) for the treatment of polycythemia vera (PV) because it is considered experimental, investigational or unproven.

General Background

Myelofibrosis and polycythemia vera are considered myeloproliferative neoplasms. Myelofibrosis is characterized by replacement of the bone marrow by fibrous scar tissue, which reduces the ability of the marrow to produce red blood cells. Polycythemia vera is characterized by an abnormal increase in the number of red and white blood cells as well as platelets, with red blood cell overproduction being predominant. There is an increase in total blood volume, as well as thrombocytosis and splenomegaly.

Myelofibrosis

This disorder is also known as primary myelofibrosis, idiopathic myelofibrosis, agnogenic myeloid metaplasia, myeloid sclerosis with myeloid metaplasia, idiopathic myeloid metaplasia, and osteosclerosis. Myelofibrosis can be associated with other hematological disorders, including polycythemia vera and essential thrombocytopenia; however, the etiology of chronic idiopathic or primary myelofibrosis is unknown.
The presence of two or three of the following factors may signal adverse prognosis (NCI, 2014a): older age, anemia, leukopenia, leukocytosis, circulating blasts, karyotype abnormalities, systemic B symptoms (i.e., fever, night sweats, and weight loss). Additionally, there are several schema used to predict prognosis that assign risk-score (i.e., low-, intermediate-, and high-risk). Individuals with symptomatic disease have a median survival of <five years (Kroger, 2009).

Most therapeutic interventions are directed toward symptom palliation and supportive measures; current medical therapeutic options for patients with primary myelofibrosis, myelofibrosis after polycythemia, or essential thrombocytopenia have not demonstrated an impact on disease course (Kroger, 2009). Allogeneic hematopoietic stem-cell transplantation (HSCT) for primary myelofibrosis is potentially curative but dangerous; transplant-related death or severe morbidity occurs in about half of transplanted patients, regardless of the intensity of conditioning regimens used (Tefferi, 2016). Allogeneic hematopoietic stem-cell transplantation (HSCT) may be appropriate for selected individuals who have an appropriate donor and can tolerate a more aggressive treatment approach.

Hematopoietic Stem-Cell Transplantation (HSCT) for Myelofibrosis

Stem-cell transplantation refers to transplantation of hematopoietic stem cells (HSCs) from a donor into a patient. HSCT can be either autologous (using the patient’s own stem cells) or allogeneic (using stem cells from a donor).

The selection of an appropriately-matched allogeneic donor source is dependent on several variables including the availability of a human leukocyte antigen (HLA)-identical sibling donor, and stage of disease. It is preferable for donors to have an HLA type that is identical to the recipient due to the potential for increased complications such as graft rejection and graft-versus-host disease; however, only about one-third of individuals who might otherwise be eligible for allogeneic HSCT have an HLA-matched sibling donor. Especially for individuals with high-risk disease, additional appropriate donor sources may include HLA-matched unrelated and HLA partially-matched related donors.

A boost of hematopoietic progenitor or stem cells, also referred to as a hematopoietic stem-cell infusion (HSCI) may be used to facilitate more rapid hematopoietic recovery, graft loss, or loss of chimerism following HSCT. The cell product used for a boost may be a previously cryopreserved cell product that contains stem cells or may alternatively require the donor to undergo additional evaluation, mobilization, and harvest. A boost is not preceded by a preparative regimen, and may be required when additional conventional chemotherapy is given to treat relapse and reestablish remission after transplantation. Prolonged cytopenias and immunosuppression may result, requiring additional HSCI which is typically given days to weeks after reinduction chemotherapy (LeMaistre, 2013).

Contraindications to HSCT

Many factors affect the outcome of hematopoietic stem-cell transplantation; the selection process is designed to obtain the best result for each individual. The presence of any significant comorbid conditions which would significantly compromise clinical care and chances of survival is a contraindication to transplantation. Relative contraindications to HSCT include, but are not limited to:

- poor cardiac function (ejection fraction < 45%)
- poor liver function (bilirubin > 2.0mg/dl and transaminases greater than two times normal), unless related to AML
- poor renal function (creatinine clearance < 50ml/min)
- poor pulmonary function [diffusion capacity (DLCO) < 60% of predicted]
- active central nervous system involvement
- a pattern of demonstrated patient noncompliance which would place a transplant at serious risk of failure
- presence of human immunodeficiency virus OR an active form of any ONE of the following:
 - hepatitis B virus (HBV)
 - hepatitis C virus (HCV)
 - human T-cell lymphotropic virus (HTLV)-1
• Karnofsky rating < 60% and/or Eastern Cooperative Oncology Group (ECOG) performance status > 2

Allogeneic Hematopoietic Stem-Cell Transplantation (HSCT) for Myelofibrosis: The utility of myeloablative allogeneic HSCT is limited by the age and condition of many patients, the availability of suitable donors, and by the morbidity and mortality associated with this procedure (Faderl, 2005; Clark, 2004). Because the disease may remain stable for years in individuals who present without adverse prognostic factors, allogeneic HSCT should be reserved for symptomatic patients (Mascarenhas, 2012). It is usually employed as a therapy for patients who have failed standard treatment and who have relapsed or refractory disease. Definitive patient selection criteria for allogeneic HSCT in this disease have not been identified; however, allogeneic HSCT has been proposed for patients under the age of 45–50 years with intermediate and high-risk features, and for patients 50–60 years of age with an anticipated survival of less than five years (Tefferi, 2016; Robin, 2011; van Biesen, 2005). The use of this therapy is also noted to be a standard treatment option by the National Cancer Institute (2014a) for the treatment of selected individuals with myelofibrosis.

Although randomized controlled clinical trial data are limited, allogeneic HSCT is considered a curative treatment option for selected individuals with myelofibrosis who have an acceptable donor (Robin, 2011). Engraftment can be obtained, and a complete and durable remission of the disease can be achieved in approximately 50% of patients (Tefferi, 2016; Mascarenhas, 2012; Kroger, 2007; Tanner, 2007; Barosi, 2006; Clark, 2004). Successful transplantation is associated with gradual resolution of marrow fibrosis and normalization of hematopoesis (Mascarenhas, 2012). Several retrospective analyzes have demonstrated improved outcomes with the use of allogeneic HSCT, with estimated one-, three-, and five-year overall survival rates of 56–61%, 41-58%, and 31–61%, respectively. Toxicity of myeloablative therapy remains high with one- and three-year treatment-related mortality (TRM) rates of 35%–48.3% and 43%, respectively, in various studies (Bacigalupo, 2010; Stewart, 2010; Patriarca, 2008; Karrabul, 2007; Ditschkowski, 2004; Deeg, 2003; Daly, 2003).

The high treatment-related mortality (TRM) associated with the use of myeloablative allogeneic HSCT has led to the investigation of non-myeloablative and reduced-intensity conditioning regimens. Reduced-intensity conditioning is based on the concept that the induction of a graft-versus-myelofibrosis (GVM) effect may be sufficient to achieve disease eradication without the need for fully myeloablative treatment (Papgeorgiou, 2007). Non-myeloablative and reduced-intensity regimens have decreased the morbidity and TRM of allogeneic HSCT and allow for a broader application in elderly patients (Kroger, 2008; Barosi, 2006).

The effectiveness of nonmyeloablative allogeneic HSCT has been demonstrated in several prospective and retrospective clinical studies with three-and five-year disease-free survival rates of 67% and 51%, respectively and overall survival up to 83% (Stewart, 2010; Kroger, 2009; Kroger, 2007; Merup, 2006; Rondelli, 2005; Kroger, 2005). In a retrospective analysis comparing two commonly used chemotherapy regimens for nonmyeloablative allogeneic HSCT, seven-year progression-free survival was up to 52%; with an overall survival rate of up to 59% (Robin; 2016).

Although longer-term follow-up data and larger studies are desirable, non-myeloablative conditioning with allogeneic hematopoietic stem-cell transplantation (HSCT) appears to be an acceptable therapeutic option for patients with myelofibrosis (Tefferi, 2016; Mascarenhas, 2012).

Autologous HSCT: Autologous HSCT has been investigated in a small number of patients in an effort to reverse advanced disease and ameliorate symptoms in patients who do not have a matched donor. Autologous HSCT may relieve disease-related symptoms such as splenomegaly, but the curative potential is very unlikely (van Beisen, 2005; Kroger, 2008). There are scarce data in the published peer-reviewed scientific literature regarding the safety and effectiveness of autologous transplantation for this indication. The role of this therapy in the treatment of myelofibrosis remains uncertain (Mascarenhas, 2012).

Professional Societies/Organizations
British Committee for Standards in Haematology ([BCSH], 2013): On behalf of the BCSH, Reilly et al. published guidelines for the diagnosis and management of primary myelofibrosis. The guidelines note that autologous HSCT cannot be recommended in PMF (Evidence level 2, Grade C). Regarding use of allogeneic HSCT, the guidelines note the following:
Transplant-eligible patients <45 years of age, with an IPSS risk of Intermediate 2 or High, especially with transfusion dependence and/or adverse cytogenetic abnormalities, should be considered for MA allo-HSCT (Evidence level 2, Grade C).

Transplant-eligible patients with an IPSS risk of Intermediate 2 or High, especially with transfusion dependence and/or adverse cytogenetic abnormalities, together with an HSCT co-morbidity index 3, or who are aged over 45 years, should be considered for RIC allo-HSCT (Evidence level 2, Grade C).

Patients should be transplanted before they have received more than 20 units of red cells (Evidence level 2, Grade C).

National Marrow Donor Program (NMDP): The NMDP (1996-2017) notes that myeloproliferative disorders should be referred for transplant evaluation for the following:

- Intermediate- or high-risk disease including:
 - High-risk cytogenetics
 - Poor initial response or at progression

National Cancer Institute (NCI): The NCI (2015) notes that allogeneic peripheral stem cell or bone marrow transplantation is a treatment option for primary myelofibrosis.

Summary for Myelofibrosis: Although randomized controlled clinical trial data are limited allogeneic stem-cell transplantation is supported by professional organization guidelines and is considered an acceptable treatment option as a second-line therapy for the treatment of myelofibrosis.

Polycythemia Vera (PV)
This disorder which is also called polycythemia rubra vera, is a rare, acquired, chronic myeloproliferative neoplasm resulting from a mutation to a single hematopoietic stem cell in the marrow. Less common synonyms include splenomegalic polycythemia, Osler disease, polycythemia with chronic cyanosis, and myelopathic polycythemia. It is the most common primary polycythemia.

Median duration of survival is fifteen years after diagnosis; life expectancy is nearly normal in the first decade of the disease. After a number of years, the disease frequently becomes inactive (i.e., spent phase); about 20% of individuals may no longer suffer from the sequelae of excessive red cell production. If the excessive production of red blood cells and platelets can be controlled, prolonged survival usually results; however, the natural history of the disorder is characterized by a lifelong propensity for thrombotic complications and late-onset disease transformation into both myelofibrosis and acute myeloid leukemia (AML).

Hematopoietic Stem-Cell Transplantation (HSCT) for PV
HSCT has been proposed as a potential treatment for PV; however, transplantation during the polycythemic phase of the disease is rarely appropriate. For those patients in whom myeloid metaplasia with myelofibrosis develops or the disease evolves to acute myelogenous leukemia (AML), HSCT may be investigated as a possible treatment option at that time. For additional information regarding HSCT for AML please refer to the Cigna Coverage Policy Stem-Cell Transplantation for Acute Myelogenous Leukemia.

Literature Review
There are scarce data in the published peer-reviewed scientific literature regarding the safety and effectiveness of HSCT for PV. Available studies are limited by uncontrolled design, small participant populations, heterogeneous patient selection criteria, and a lack of long-term outcomes data.

Professional Societies/Organizations
Hematopoietic stem-cell transplantation is not mentioned as a treatment option for polycythemia vera by the NCI Chronic Myeloproliferative Neoplasms Treatment PDQ® (2015).

Summary for Polycythemia Vera: There is insufficient evidence in the published peer-reviewed scientific literature to support the safety and effectiveness of hematopoietic stem-cell transplantation (HSCT) for the treatment of polycythemia vera (PV). At this time the role of HSCT has not yet been established for this indication.
The American Board of Internal Medicine’s (ABIM) Foundation Choosing Wisely® Initiative (2014):
No relevant statements.

Use Outside of the US
European LeukemiaNet and European Blood and Marrow Transplantation Group: Consensus guidelines regarding the indication and management of allogeneic stem cell transplantation in primary myelofibrosis were published by Kroger et al. (2015). Recommendations note:

- All patients with intermediate-2 or high-risk disease according to International Prognostic Scoring System (IPSS), dynamic International Prognostic Scoring System (DIPSS) or DIPSS+, and age <70 years, should be considered potential candidates for allo-stem-cell transplant (SCT).
- Patients with intermediate-1-risk disease and age <65 years should be considered candidates for allo-SCT if they present with either refractory, transfusion-dependent anemia or a percentage of blasts in peripheral blood (PB) >2%, or adverse cytogenetics (as defined by the DIPSS+ classification).
- Patients with low-risk disease should not undergo allo-SCT. They should be monitored and evaluated for transplantation when disease progression occurs.
- Patients in blast transformation (blasts in PB or in bone marrow or both equal to or >20%) are not good candidates for allo-SCT. They should receive debulking therapy and be reconsidered for transplant after achieving a partial or complete remission of leukemia.
- Patients with IPSS, DIPSS or DIPSS+ intermediate-2- or high-risk disease lacking an HLA-matched sibling or unrelated donor, should be enrolled in a protocol using HLA non-identical donors such as HLA-mismatched unrelated donors, cord blood or HLA-haploidentical SCT.
- Alternative donor sources may be effective, but the actual success rates and the incidence of complications such as graft failure and GvHD remain to be determined.

Summary
Although data are not robust, allogeneic hematopoietic stem-cell transplantation (HSCT) is an accepted treatment option for patients with myelofibrosis who have failed standard treatment and who have relapsed or refractory disease. At present there is insufficient evidence in the published, peer-reviewed scientific literature to determine the safety and effectiveness of autologous HSCT for myelofibrosis. There are scarce data regarding the safety and effectiveness of HSCT for the treatment of polycythemia vera and it is not considered a standard of care. Professional support in the form of published clinical guidelines are lacking for this indication.

Coding/Billing Information

Note: 1) This list of codes may not be all-inclusive.
2) Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement

Covered when medically necessary when used to report allogeneic hematopoietic stem-cell transplantation (HSCT) for the treatment of myelofibrosis:

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>38205</td>
<td>Blood-derived hematopoietic progenitor cell harvesting for transplantation, per collection; allogeneic</td>
</tr>
<tr>
<td>38207</td>
<td>Transplant preparation of hematopoietic progenitor cells; cryopreservation and storage</td>
</tr>
<tr>
<td>38208</td>
<td>Transplant preparation of hematopoietic progenitor cells; thawing of previously frozen harvest, without washing, per donor</td>
</tr>
<tr>
<td>38209</td>
<td>Transplant preparation of hematopoietic progenitor cells; thawing of previously frozen harvest, with washing, per donor</td>
</tr>
<tr>
<td>38210</td>
<td>Transplant preparation of hematopoietic progenitor cells; specific cell depletion within harvest, T-cell depletion</td>
</tr>
<tr>
<td>38212</td>
<td>Transplant preparation of hematopoietic progenitor cells; red blood cell removal</td>
</tr>
<tr>
<td>38213</td>
<td>Transplant preparation of hematopoietic progenitor cells; platelet depletion</td>
</tr>
<tr>
<td>HCPCS Codes</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>S2140</td>
<td>Cord blood harvesting for transplantation, allogeneic</td>
</tr>
<tr>
<td>S2142</td>
<td>Cord blood derived stem-cell transplantation, allogeneic</td>
</tr>
<tr>
<td>S2150</td>
<td>Bone marrow or blood-derived stem cells (peripheral or umbilical), allogeneic or autologous, harvesting, transplantation, and related complications; including pheresis and cell preparation/storage; marrow ablative therapy; drugs, supplies, hospitalization with outpatient follow-up; medical/surgical, diagnostic, emergency, and rehabilitative services; and the number of days of pre-and post-transplant care in the global definition</td>
</tr>
</tbody>
</table>

Experimental/Investigational/Unproven/Not Covered when used to report autologous hematopoietic stem-cell transplantation (HSCT) for the treatment of myelofibrosis:

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>38206</td>
<td>Blood-derived hematopoietic progenitor cell harvesting for transplantation, per collection; autologous</td>
</tr>
<tr>
<td>38207</td>
<td>Transplant preparation of hematopoietic progenitor cells; cryopreservation and storage</td>
</tr>
<tr>
<td>38208</td>
<td>Transplant preparation of hematopoietic progenitor cells; thawing of previously frozen harvest, without washing, per donor</td>
</tr>
<tr>
<td>38209</td>
<td>Transplant preparation of hematopoietic progenitor cells; thawing of previously frozen harvest, with washing, per donor</td>
</tr>
<tr>
<td>38210</td>
<td>Transplant preparation of hematopoietic progenitor cells; specific cell depletion within harvest, T-cell depletion</td>
</tr>
<tr>
<td>38212</td>
<td>Transplant preparation of hematopoietic progenitor cells; red blood cell removal</td>
</tr>
<tr>
<td>38213</td>
<td>Transplant preparation of hematopoietic progenitor cells; platelet depletion</td>
</tr>
<tr>
<td>38214</td>
<td>Transplant preparation of hematopoietic progenitor cells; plasma (volume) depletion</td>
</tr>
<tr>
<td>38215</td>
<td>Transplant preparation of hematopoietic progenitor cells; cell concentration in plasma, mononuclear, or buffy coat layer</td>
</tr>
<tr>
<td>38232</td>
<td>Bone marrow harvesting for transplantation; autologous</td>
</tr>
<tr>
<td>38241</td>
<td>Hematopoietic progenitor cell (HPC); autologous transplantation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCPCS Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2150</td>
<td>Bone marrow or blood-derived stem cells (peripheral or umbilical), allogeneic or autologous, harvesting, transplantation, and related complications; including pheresis and cell preparation/storage; marrow ablative therapy; drugs, supplies, hospitalization with outpatient follow-up; medical/surgical, diagnostic, emergency, and rehabilitative services; and the number of days of pre-and post-transplant care in the global definition</td>
</tr>
</tbody>
</table>

Experimental/Investigational/Unproven/Not Covered when used to report hematopoietic stem-cell transplantation (HSCT) for the treatment of polycythemia vera (PV):

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>38205</td>
<td>Blood-derived hematopoietic progenitor cell harvesting for transplantation, per collection; allogeneic</td>
</tr>
<tr>
<td>38206</td>
<td>Blood-derived hematopoietic progenitor cell harvesting for transplantation, per collection; autologous</td>
</tr>
<tr>
<td>38207</td>
<td>Transplant preparation of hematopoietic progenitor cells; cryopreservation and storage</td>
</tr>
<tr>
<td>38208</td>
<td>Transplant preparation of hematopoietic progenitor cells; thawing of previously frozen harvest, without washing, per donor</td>
</tr>
<tr>
<td>38209</td>
<td>Transplant preparation of hematopoietic progenitor cells; thawing of previously frozen harvest, with washing, per donor</td>
</tr>
<tr>
<td>38210</td>
<td>Transplant preparation of hematopoietic progenitor cells; specific cell depletion within harvest, T-cell depletion</td>
</tr>
<tr>
<td>38211</td>
<td>Transplant preparation of hematopoietic progenitor cells; tumor cell depletion</td>
</tr>
<tr>
<td>38212</td>
<td>Transplant preparation of hematopoietic progenitor cells; red blood cell removal</td>
</tr>
<tr>
<td>38213</td>
<td>Transplant preparation of hematopoietic progenitor cells; platelet depletion</td>
</tr>
<tr>
<td>38214</td>
<td>Transplant preparation of hematopoietic progenitor cells; plasma (volume) depletion</td>
</tr>
<tr>
<td>38215</td>
<td>Transplant preparation of hematopoietic progenitor cells; cell concentration in plasma, mononuclear, or buffy coat layer</td>
</tr>
<tr>
<td>38230</td>
<td>Bone marrow harvesting for transplantation; allogeneic</td>
</tr>
<tr>
<td>38232</td>
<td>Bone marrow harvesting for transplantation, autologous</td>
</tr>
<tr>
<td>38240</td>
<td>Hematopoietic progenitor cell (HPC); allogeneic transplantation per donor</td>
</tr>
<tr>
<td>38241</td>
<td>Hematopoietic progenitor cell (HPC); autologous transplantation</td>
</tr>
<tr>
<td>38242</td>
<td>Allogeneic lymphocyte infusions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCPCS Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2140</td>
<td>Cord blood harvesting for transplantation, allogeneic</td>
</tr>
<tr>
<td>S2142</td>
<td>Cord blood derived stem cell transplantation, allogeneic</td>
</tr>
<tr>
<td>S2150</td>
<td>Bone marrow or blood-derived stem cells (peripheral or umbilical), allogeneic or autologous, harvesting, transplantation, and related complications; including pheresis and cell preparation/storage; marrow ablative therapy; drugs, supplies, hospitalization with outpatient follow-up; medical/surgical, diagnostic, emergency, and rehabilitative services; and the number of days of pre-and post-transplant care in the global definition</td>
</tr>
</tbody>
</table>

References

17. Kroger N, Mesa RA. Choosing between stem cell therapy and drugs in myelofibrosis. Leukemia. 2008 Jan 10; [Epub ahead of print]

terminology for episodes of hematopoietic stem cell patient transplant care. Biol Blood Marrow

ameliorates cytopenias and splenomegaly in myelofibrosis with myeloid metaplasia: a phase II trial. J

Silberstein LE, Heslop HE, Weitz, JI, editors. Hematology: basic principles and practice, 6th ed. Orlando:
Churchill Livingstone; 2012.

23-9.

transplantation in myelofibrosis using conventional or reduced-intensity conditioning regimens. Br J

conditioning allogeneic haematopoietic stem cell transplantation for myelofibrosis. Leuk Res. 2011

http://www.cancer.gov/cancertopics/pdq/treatment/myeloproliferative/HealthProfessional/page3

27. Papageorgiou SG, Castleton A, Bloor A, Kottaridis PD. Allogeneic stem cell transplantation as treatment

stem cell transplantation in myelofibrosis: the 20-year experience of the Gruppo Italiano Tripianto di

29. Reinhard H, Klingebiel T, Lang P, Bader P, Niethammer D, Graf N. Stem cell transplantation for

transplantation according to reduced-intensity conditioning regimen in patients undergoing

transplantation for myelofibrosis: a report of the Societe Francais de Greffe de Moelle et de Therapie

hematopoietic stem-cell transplantation with reduced-intensity conditioning in intermediate- or high-risk

in primary myelofibrosis: A British Society for Blood and Marrow Transplantation study. Bone Marrow

The registered marks “Cigna” and the “Tree of Life” logo are owned by Cigna Intellectual Property, Inc., licensed for use by Cigna Corporation and its operating subsidiaries. All products and services are provided by or through such operating subsidiaries and not by Cigna Corporation. Such operating subsidiaries include Connecticut General Life Insurance Company, Cigna Health and Life Insurance Company, Cigna Behavioral Health, Inc., Cigna Health Management, Inc., and HMO or service company subsidiaries of Cigna Health Corporation.