Neuropsychological Testing

Table of Contents

Coverage Policy .. 1
Overview.. 2
General Background ... 2
Coding/Billing Information 17
References .. 32

Related Coverage Resources

- Attention-Deficit/Hyperactivity Disorder: Assessment and Treatment
- Autism Spectrum Disorder/Pervasive Developmental Disorders: Assessment and Treatment
- Cognitive Rehabilitation
- Lyme Disease Treatment—Antibiotic Treatment

INSTRUCTIONS FOR USE

The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide utilization review services to clients and do not make coverage determinations. References to standard benefit plan language and coverage determinations do not apply to those clients. Coverage Policies are intended to provide guidance in interpreting certain standard benefit plans administered by Cigna Companies. Please note, the terms of a customer’s particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer’s benefit plan document may contain a specific exclusion related to a topic addressed in a Coverage Policy. In the event of a conflict, a customer’s benefit plan document always supersedes the information in the Coverage Policies. In the absence of a controlling federal or state coverage mandate, benefits are ultimately determined by the terms of the applicable benefit plan document. Coverage determinations in each specific instance require consideration of 1) the terms of the applicable benefit plan document in effect on the date of service; 2) any applicable laws/regulations; 3) any relevant collateral source materials including Coverage Policies and; 4) the specific facts of the particular situation. Coverage Policies relate exclusively to the administration of health benefit plans. Coverage Policies are not recommendations for treatment and should never be used as treatment guidelines. In certain markets, delegated vendor guidelines may be used to support medical necessity and other coverage determinations.

Coverage Policy

Please refer to the applicable benefit plan to determine terms and conditions of coverage. Coverage of neuropsychological testing is generally subject to the provisions of the applicable medical benefit. Services for or in connection with an injury or illness arising out of, or in the course of, any employment for wage or profit are specifically excluded under many benefit plans. Therefore, treatment for metal toxicity that occurs as a result of occupational exposure is generally not covered.

A number of states have coverage mandates that require regulated benefit plans to cover services related to an autism spectrum disorder (ASD) or pervasive developmental disorder (PDD). For example, New York law requires regulated benefit plans to provide coverage for the screening, diagnosis and treatment of ASD/PDD.

Neuropsychological testing is considered medically necessary when the information obtained will be used for clinical decision-making and there has been EITHER:

- a significant mental status change, not due to a metabolic disorder (e.g., delirium), that has not responded to treatment
- a significant behavioral change, significant memory loss or brain injury

and a reasonable suspicion of ANY of the following:
• autism spectrum disorder
• brain tumor
• cerebral anoxic or hypoxic episode
• central nervous system (CNS) infection with presence of neurocognitive problems (e.g., herpes encephalitis, human immunodeficiency virus [HIV] infection, Lyme disease with CNS neurological involvement)
• dementia (e.g., Alzheimer’s disease, vascular dementia, Lewy body dementia)
• demyelinating disease (e.g., multiple sclerosis)
• epilepsy and seizure disorders
• exposure to agents known to be associated with cerebral dysfunction (e.g., lead poisoning, intrathecal methotrexate, cranial irradiation)
• extrapyramidal disease (e.g., Parkinson’s, Huntington’s Disease)
• postconcussion syndrome
• stroke or cerebral vascular injury (e.g., brain aneurysm, subdural hematoma)
• traumatic brain injury
• concussion (mild traumatic brain injury) and mild cognitive impairment (neurocognitive disorder) when those diagnoses are associated with a change in mental status, there is also a suspicion of an underlying central nervous system condition and standard treatment has failed

Neuropsychological testing is considered to be not medically necessary when used primarily for:

• educational or vocational assessment or training
• improving academic performance
• baseline assessment of function
• monitoring of chronic conditions when there is no significant new change in behavior, mental state or cognition
• screening purposes

Computerized neuropsychological testing for any indication that does not require a physician, psychologist, or licensed mental health professional to provide interpretation and preparation of a report is considered experimental, investigational or unproven.

Overview

This Coverage Policy addresses neuropsychological testing used to assess neurocognitive effects of various medical disorders and aid in clinical decision-making.

General Background

Neuropsychological testing consists of the administration of a series of standardized assessments designed to objectively measure cognitive function. Neuropsychological testing is indicated when notable behavioral and/or cognitive changes have been associated with a history of moderate to severe head trauma or organic brain disease. This testing provides the basis for the conclusions regarding the neurocognitive effects of various medical disorders and aids in diagnosis. Making an assessment of preserved and compromised cognitive functions can also help to predict the effects of remediation. The testing results assist the clinician determine the scope and severity of cognitive impairments through a comparison of patient responses to established normative test values. The results of the testing may assist the clinician in developing a program or plan of care that is specific to the patient's needs, and determine appropriate adjustments to the patient's treatment.

Neuropsychological testing should be delayed until reversible medical or metabolic conditions that are adversely affecting the central nervous system (CNS) are corrected, when possible. Formal neuropsychological testing should also be delayed until any acute changes have stabilized following trauma, infections, or metabolic or vascular insults to the CNS.
Neuropsychological testing should only be performed by practitioners who are appropriately trained in administering and interpreting these tests.

The components of neuropsychological assessment include all of the following:

- assessment of higher cortical functions, which includes thought process and organization, reasoning and judgment
- assessment of attention, language, memory and problem-solving
- obtaining a developmental history, the history of medical disease, trauma and psychiatric illness, and the history of the person’s cognitive decline and/or premorbid level of function

Neuropsychological tests and measures used for clinical purposes must meet standards for psychometric adequacy. These standards include (American Academy of Clinical Neuropsychology [AACN], 2007):

- acceptable levels of reliability
- demonstrated validity in relation to other tests and/or to brain status, including evidence that the test or measure assesses the process, ability, or trait it purports to assess
- normative standards that allow the clinician to evaluate the patient’s scores in relation to relevant patient characteristics, such as age, gender, and socio-demographic or cultural/linguistic background

Neuropsychological testing differs from psychological testing in that neuropsychological testing measures higher cerebral functioning, which focuses on cognitive skills and abilities (i.e., language, memory and problem-solving), whereas psychological testing is designed to provide information about a patient’s personality and emotional functioning. Types of psychological testing include self-reported questionnaires, rating scales (e.g., the Hamilton Depression Rating Scale), projective techniques (e.g., the Rorschach or Thematic Apperception Test [TAT]), and screening tests of cognitive function.

Testing Methods

A wide variety of neuropsychological tests are available. These tests have been validated, are reliable and sensitive, and have been standardized to a normative sample. Normative data provides information about the expected test performance of individuals within a particular group, which is often stratified based on age or level of education (Hill, et al., 2016). The fundamental core neuropsychological assessment typically includes tests designed to measure attention, concentration, learning, memory, problem-solving, language function, and visual-spatial function.

The two basic approaches to testing include a fixed or a flexible battery. The fixed battery approach requires that the same tests are administered to every patient in a standardized manner. One example of a fixed battery is the Halstead–Reitan battery (Hill, et al., 2016). An advantage to the fixed battery approach is that the information gathered is comprehensive and systematically assesses multiple domains of cognitive functioning.

Disadvantages the fixed battery approach include its length which may be too long for some patients to tolerate. In contrast, the flexible battery approach allows neuropsychologists to develop a test battery based on the referral question, patient’s history, and clinical interview (Hill, et al., 2016). In this approach, a brief set of basic tests is initially administered, and additional tests of more specific abilities are used to conduct in-depth follow-up assessments based on each particular patient’s needs.

Computerized Neuropsychological Testing: Computerized neuropsychological testing is also referred to as automated or computer-based testing. This type of testing has been developed over the last 20 years (Schatz and Browndyke, 2002) as an alternative, or adjunct to, traditionally administered testing methods. There are features in computer-based testing that are absent in the traditional form of neuropsychological testing, including: timing of response latencies, automated analysis of response patterns, transfer of results to a database for further analysis, and the ease with which normative data can be collated or compared to existing databases (Schatz and Browndyke, 2002). Limitations to computer-based testing include, but may not be limited to: unfamiliarity with the equipment by the patient and the potential for inaccurate timing procedures. Some of the tests are a translation of existing standardized tests into a computerized administration (e.g., Wisconsin Card Sorting Test™) while others include the development of tests and test batteries of tests unique to the computer application (Wild, et al., 2008).
Many of the computer based tests were developed to evaluate the presence of mild cognitive impairment or for sports-related concussion. Some of the tests have been adapted for testing in the pediatric populations, including assessment for attention-deficit/hyperactivity disorder (ADHD) (Luciana, 2003). These tests are also used in the research setting.

Many computerized tests do not require a professional to interpret or to complete a report. The computer program provides an automatically generated report. The test may not involve a visit or evaluation by a neuropsychologist and may be administered by a non-skilled or unlicensed individual.

Examples of computerized testing include, but are not limited to:

- Mindstreams® Cognitive Health Assessment (NeuroTrax, Newark, NJ): This product is intended to provide an objective measurement of cognitive function parameters. An Assessment Report is available within seconds after testing, and contains a complete accounting of performance in the cognitive domains of memory, attention, executive function, visual spatial perception, verbal skills, motor planning, and information processing speed.
- BrainCare (NeuroTrax, Newark NJ) is the current version of the original MindStreams product. BrainCare is a cloud-based software application that includes tests, reports and data-driven recommendations.
- Cambridge Neuropsychological Testing Automated Battery (CANTAB®) (Cambridge Cognition Ltd, Cambridge, UK): This test is a non-linguistic and culturally blind and can be administered by a trained assistant. This test includes specialized batteries that deal with specific conditions including: CANTAB Alzheimer’s, CANTAB ADHD, and CANTAB’s Core Cognition battery.
- CNS Vital signs® (CNS Vital Signs LLC, Chapel Hill, NC): This test batteries for five domains: memory (verbal and visual recognition), psychomotor speed (i.e., finger tapping, symbol digit coding), reaction time, cognitive flexibility (shifting attention, Stroop paradigm), and complex attention. The program can be completed in 25-30 minutes, does not require an attendant to be present and the program will produce a report.
- Computer-Administered Neuropsychological Screen for Mild Cognitive Impairment (CANS-MCI®) (Screen, Inc. Seattle, WA): This test was developed as a screening instrument for detection of mild cognitive impairment. Tests include assessment of language, memory and executive function.

U.S. Food and Drug Administration (FDA)
FDA clearance is not found the FDA database for MindStreams Cognitive Health Assessment or for NeuroTrax BrainCare.

NeuroTrax Corp., the manufacturer of MindStreams, submitted a 510(k) premarket notification to the FDA on March 9, 2007. However, in a letter dated December 21, 2007, the FDA declined the application and indicated that it was determined that the MindStreams device was not substantially equivalent to other devices and considered the device to be a Class III device. NeuroTrax Corp. appealed this decision on April 10, 2008, but the FDA maintained its earlier decision and notified the company of such on December 4, 2008. On March 15, 2012, the FDA sent a warning letter to NeuroTrax Corp. stating that the MindStreams device was being marketed in the United States without FDA marketing clearance or approval. NeuroTrax Corp. was required to cease marketing in the United States within 15 days of receipt of the warning (FDA, 2012).

Neuropsychological Testing in the Educational Setting
Neuropsychological testing is also used in educational settings to provide information regarding educational planning and determine appropriate classroom placement (Stebbins, 2007). The testing may be used to identify specific learning disabilities and developmental disabilities.

Neuropsychological Testing
Tourette’s syndrome (TS) is a chronic tic disorder, with the onset in childhood and characterized by motor and vocal tics. This disorder is frequently accompanied by other conditions; with the three most common being attention deficit/hyperactivity disorder (ADHD), learning disabilities, and obsessive-compulsive disorder (Bagheri, et al., 1999). Neuropsychological testing may be utilized to identify the patient's cognitive strengths and weaknesses and allow the patient to reach his or her maximum academic potential (Jankovic, 2007). Neuropsychological testing is considered primarily educational in nature and not medically necessary when
performed for the assessment and management of Tourette’s syndrome. Guidelines published by the European Society for the Study of Tourette’s Syndrome noted that the clinical usefulness of formal neuropsychological testing in children with TS has not been clearly established to date, and more neuropsychometric tools are appropriate, at present, only in research settings.” (Cath, et al., 2011)

Neuropsychological testing is generally performed primarily for educational reasons when done in association with the management of ADHD and disruptive behavior disorders (e.g., oppositional defiant disorder, conduct disorder). Educational testing is usually provided by school systems under applicable state and federal rules.

The standard for diagnosis of ADHD remains the clinical interview and assessment. There is no specific test that can confirm a diagnosis of ADHD. Neuropsychological testing may be useful in patients in whom diagnosis is difficult; when there is strong evidence of underlying neurological condition, and cognitive impairment secondary to another disorder is suspected (e.g., those with previous head injury [e.g., traumatic brain injury], alcohol-related cognitive deficits, early dementias or seizures). There is insufficient evidence to recommend neuropsychological evaluation for ADHD to be performed on a routine basis in the management of ADHD.

The autism spectrum disorders (ASD) are a range of complex behavioral disorders that are also referred to as pervasive developmental disorders (PDD). There is no specific test that can confirm a diagnosis of ASD. The evaluation must include clinical history which incorporates parental report, family history, pregnancy, neonatal and developmental history of the child and a clinical examination (Volkmar, et al., 2014; Tuchman, 2003; Filipek, et al., 2000 [reaffirmed 2010]). It has been proposed that neuropsychological testing be used in the assessment of ASD and to assist with the educational planning process.

Note however, a number of states have coverage mandates that require regulated benefit plans to cover services related to ASD/PDD. For example, New York law requires regulated benefit plans to provide coverage for the screening, diagnosis and treatment of ASD/PDD.

Migraines
The published literature regarding the clinical utility of neuropsychological testing for patients with headaches and migraines is not conclusive. It has been suggested that there may be cognitive impairment with migraines, but studies have not been conclusive (O’Bryant, et al., 2006; Baars, et al., 2010). There is insufficient clinical evidence that demonstrates that neuropsychological testing is useful in clinical decision making or will improve management of these conditions.

Mild Cognitive Impairment (MCI)
MCI is a condition associated with impairments in understanding and memory not severe enough to be diagnosed as dementia, but more pronounced than those associated with normal aging (National Institute of Neurological Disorders and Stroke [NINDS], 2011). MCI is a classification of persons with memory impairment who are not demented (normal general cognitive function; intact activities of daily living). Patients with MCI should be identified and monitored for cognitive and functional decline due to their increased risk for subsequent dementia (Petersen, et al., 2001).

Chronic Fatigue Syndrome
Chronic fatigue syndrome (CFS) can be a disabling illness characterized by persistent fatigue and associated myalgias, tender lymph nodes, arthralgias, chills, feverish feelings and postexertional malaise. Diagnosis of this syndrome is by exclusion with no definitive laboratory test or physical findings. Evaluation for this condition should include a detailed medical history, complete physical examination, including a mental status examination and a standard series of urine and blood laboratory tests to identify other possible causes of illness. The medical necessity for the use of neuropsychological testing in the assessment and/or management of chronic fatigue syndrome is not supported in the medical literature.

Baseline Assessment
A recent area of development for neuropsychological testing, in particular computerized testing, is baseline assessment, which is when the testing is performed in the absence of signs and/or symptoms for purposes of a later comparison. A use for baseline testing that is becoming prevalent is in the assessment and management of sports-related concussion (Schatz and Browndyke, 2002). In some contact sports, an athletic program may perform a baseline assessment of an individual's cognitive performance at the beginning of the
season for purposes of later comparison in the event of an injury. When these tests are performed prior to injury, or in the absence of signs and/or symptoms, this use would not be considered medically necessary.

Concussion
A mild or minor traumatic brain injury (TBI) is a temporary and brief interruption of neurologic function after head trauma, and may involve a loss of consciousness. A concussion is a type of minor TBI usually caused by acceleration-deceleration or rotational injury to a freely mobile head, and is frequently associated with contact sports. Almost all-patients with minor TBI will have rapid and complete symptom resolution; with no long-term sequelae. The majority (80–90%) of concussions resolve in a short (7–10 day) period, although the recovery time frame may be longer in children and adolescents (McCrory, et al., 2013).

The diagnosis of acute concussion involves the assessment of a range of domains, including clinical symptoms, physical signs, behavior, balance, sleep, and cognition, along with a detailed concussion history (McCrory, et al., 2009). The cornerstone of concussion management is physical and cognitive rest until symptoms resolve and then a graded program of exertion prior to medical clearance and return to play (when associated with sports injury). The majority of patients will recover spontaneously over several days (McCror y, et al., 2009). The individual should be completely symptom free at rest and with physical exertion (e.g., sprints, non-contact aerobic activity) and cognitive exertion (e.g., studying, schoolwork) prior to return to sports or recreational activities (CDC, 2015).

Past history of concussions is among the risk factors that can lead to a protracted period of recovery. The number and date(s) of prior concussions and the duration of symptoms for each injury should be assessed. The effects of multiple mild TBIs may be cumulative, especially if there is minimal duration of time between injuries and less biomechanical force results in subsequent mild traumatic brain injury (CDC, 2015).

Neuropsychological testing is increasingly being used in the area of sport-related concussion to assist in return to play decisions (McCrory, et al., 2009). The question as to whether or not routine testing is associated with improved clinical outcomes is unclear (Kirkwood, et al., 2009). A review of the evidence for the clinical utility of a computerized test, ImPACT, reveals insufficient support to suggest that use of the test is associated with modified risk. The report concluded that “for evaluating and advising concussed athletes when to return to play, ImPACT test results should not be the determining factor (Mayers, et al., 2012).

The effects of multiple mild TBIs may be cumulative. Risk factors for protracted recovery or cumulative impact include past history of concussion, time to recovery, successive concussions with limited time in between insults, and the degree of biomechanical force associated with the trauma (CDC, 2015). Therefore, a thorough clinical review that includes the number and date(s) of prior concussions is essential to a good assessment.

Neuropsychological testing may be medically necessary when the concussion is associated with a change in mental status, there is also a suspicion of an underlying central nervous system condition and standard treatment has failed.

Postconcussion Syndrome: A small percentage of patients may report persistent symptoms (e.g., headache, sensory sensitivity, memory or concentration difficulties, irritability, sleep disturbance, depression) for extended periods after trauma. These symptoms are referred to as postconcussion or postconcussive syndrome (Heegaard and Biros, 2014). The condition is defined in the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition as three months’ duration of three (or more) of the following symptoms: fatigue; disordered sleep; headache; vertigo/dizziness; irritability or aggressiveness; anxiety or depression; personality changes; and/or apathy (Halstead, et al., 2010). Patients with persistence of symptoms may need referral for neuropsychological testing (Rossetti, et al., 2014).

Computerized neuropsychological test batteries for concussion: Additional computerized neuropsychological test batteries are used in management of concussions to facilitate decisions about safe return to play, work or school. These tests generally take about 15-25 minutes to complete. An example of computerized testing used in evaluation of concussion include is the ImPACT (Immediate Post-Concussion Assessment and Cognitive Testing) (ImPACT Applications, Inc., Pittsburgh, PA). According to the vendor website the test can be administered by an athletic trainer, school nurse, athletic director, team coach, team
doctor, or anyone trained to administer baseline testing. It takes approximately 20 minutes and a clinical report is provided by the program.

Literature Review—Neuropsychological Testing for Concussion: Although neuropsychological testing appears to be used in the assessment of sport-related concussion, the scientific literature is not conclusive regarding the clinical utility of this testing for evaluation and management of concussion. The published literature generally addresses the use of computerized testing for the assessment of sport-related concussion in the areas of baseline assessment and return-to-play decisions. The studies focus on a specific population and it is difficult to generalize the results cannot be generalized to other populations.

Hayes published a technology report for computerized neurocognitive testing (CNT) for sports-related head injury (Hayes, 2014; 2017). The review included six studies that evaluated the ability of CNT to detect impairment due to sports-related concussion in athletes. All six studies used the ImPACT test; and, one study also evaluated HeadMinder. The review found that the overall body of evidence evaluating the diagnostic performance of CNT was of low quality. The review identified limitations of the evidence that included study quality, small number of studies, and the limited generalizability of the findings to female populations. The review concluded that it appears that computerized neurocognitive testing (CNT) improves clinical assessment of cognitive impairment in athletes with a concussion; however, it is uncertain what the extent of the clinical benefit added by CNT, its role in patient management, and the impact on health outcomes. The report included the following findings:

- CNT combined with clinical assessment has good sensitivity and moderate specificity for the diagnosis of concussion.
- Evidence is lacking evaluating the prognostic ability of CNT for evaluating recovery from concussion.
- Evidence is lacking evaluating the effect of CNT on post-assessment symptoms.
- Evidence is lacking evaluating the accuracy of CNTs other than the ImPACT test.

Gaudet et al. (2017) reported on a systematic review of existing research that investigated the prevalence of invalid baseline results and the effectiveness of Immediate Post-Concussion and Cognitive Testing (ImPACT) embedded invalidity indicators in detecting suspect effort. The study included 17 studies that included prevalence rates of invalid performances or examined the effectiveness of ImPACT’s invalidity indicators. The inclusion criteria included a minimum sample of at least 20 participants; included an original data-set; the study was relational, experimental, or quasi-experimental; the use of ImPACT for cognitive screening; and, the study included the rate of invalid performances generated for the study sample, even if not the primary focus of the study. Of these studies, 12 included prevalence rates of invalid baseline results; and across this group of studies (after removing an outlier), the weighted prevalence rate of invalid baseline results was 6%. Four of the 17 studies examined the effectiveness of ImPACT’s embedded invalidity indicators. ImPACT’s embedded invalidity indicators correctly identified suboptimal effort in approximately 80% of individuals instructed to perform poorly and avoid detection (‘coached’) or instructed to perform poorly (‘naïve’). The authors concluded that the findings raise a number of issues pertaining to the use of ImPACT including that invalid performance incidence may increase with large group versus individual administration, use in nonclinical settings, and among those with Attention Deficit-Hyperactivity Disorder or learning disability. The authors note that although ImPACT’s embedded invalidity indicators detect invalid performance at a rate of 6% on average, known group validity studies suggest that these measures miss invalid performance approximately 20% of the time when individuals purposefully underperform. Limitation of the studies included the small sample size.

Hang et al. (2015) reported on a prospective cohort study to determine if computerized neurocognitive testing (Immediate Post-Concussion Assessment and Cognitive Testing [ImPACT]) in the emergency department (ED) can be used as a prognostic tool to detect young athletes at risk of having protracted concussive symptoms. The study included 109 subjects 11 to 18 years who presented to an ED less than 24 hours after sustaining a sports-related concussion. ImPACT was administered in the ED, and categorization of performance was done with score of “poor” if the athlete had 3 (of 4) or greater low domain scores. Participants completed the Post-Concussion Symptom Scale (PCSS) in the ED and at one and two weeks after injury. Athletes were symptomatic if their PCSS score was more than six in males and more than eight in females. Results indicated that 60% and 36% remained symptomatic at 1 and 2 weeks after injury, respectively. “Poor” ImPACT performance was not found to be particularly useful in predicting athletes with protracted symptoms (at 1 week: positive predictive value, 70.8%; negative predictive value, 43.5%; at 2 weeks: positive predictive value, 47.8%; negative predictive value, 70.8%).
value, 68.9%). In bivariate analysis, a higher ED PCSS score was associated with protracted symptoms (at 1 week: odds ratio, 1.1 [confidence interval, 1.0-1.1]; at 2 weeks: odds ratio, 1.0 [confidence interval, 1.0-1.1]). The authors concluded that computerized neurocognitive testing in the ED has limited usefulness in predicting protracted symptoms and further research is necessary.

The American Academy of Clinical Neuropsychology (AACN) and the National Academy of Neuropsychology (NAN) published joint position paper on appropriate standards and conventions for computerized neuropsychological assessment devices (CNADs) (Bauer, et al., 2012). The paper includes the following statements regarding CNADs:

- CNADs are subject to, and should meet, the same standards for the development and use of educational, psychological, and neuropsychological tests as are applied to examiner-administered tests.
- Developers of CNADs are expected to provide a clear definition of the intended end-user population, including a description of the competencies and skills necessary for effective and accurate use of the device and the data it provides.
- Test developers should provide users with sufficient technical information to insure that the local installation of a CNAD will produce data that can be accurately compared with that which exists in the test’s normative database.
- CNADs are subject to the same standards and conventions of psychometric test development, including descriptions of reliability, validity, and clinical utility (accuracy and diagnostic validity), as are examiner-based measures.
- Professionals select scoring and interpretation services (including automated services) on the basis of evidence of the validity of the program and procedures as well as on other appropriate considerations.
- Professionals retain responsibility for the appropriate application, interpretation, and use of assessment instruments, whether they score and interpret such tests themselves or use automated or other services.

Echemendia et al. (2013) reported on a critical review the literature from the past 12 years regarding the key issues in sports-related neuropsychological assessment. The review found that based on review of the literature, that traditional and computerized neuropsychological tests are useful in the evaluation and management of concussion; brief cognitive evaluation tools are not substitutes for formal neuropsychological assessment. The authors note that there is insufficient evidence to recommend the widespread routine use of baseline neuropsychological testing.

Resch et al. (2013) conducted a cross-sectional cohort study of 91 healthy subjects to document test-retest reliability for the ImPACT neuropsychological test battery using two different clinically relevant time intervals. Both groups completed ImPACT forms 1, 2, and 3, which were delivered sequentially either at: one week intervals for group one (n=46) or at baseline, day 45, and day 50 for group two (n=45). Group two also completed the Green Word Memory Test (WMT) as a measure of effort. Intraclass correlation coefficients (ICCs) were calculated for the composite scores of ImPACT between time points. Repeated-measures analysis of variance was used to evaluate changes in ImPACT and WMT results over time. The ICC values for group one ranged from 0.261–0.878 for the four ImPACT composite scores. The ICC values for group two ranged from 0.374–0.756. In group one, ImPACT classified 37.0% and 46.0% of healthy participants as impaired at time points two and three, respectively. In group two, ImPACT classified 22.2% and 28.9% of healthy participants as impaired at time points two and three respectively. ImPACT misclassified 22% to 46% of healthy college-aged adult sample as impaired on one or more indices at one or both time points after baseline testing. The authors note that ImPACT had varying test-retest reliability on several metrics using different time frames for reassessment. This study included healthy subjects, rather than those with a head injury, and did not address clinical utility.

Thomas et al. (2011) performed a prospective non-controlled study using sixty subjects, aged 11-17, who presented to the emergency department (ED) immediately after a head injury. The study was designed to answer two questions: 1) is there a correlation between performance on a computer-based neurocognitive assessment (ImPACT) performed within 12 hours of head injury, and repeat assessments performed at least once, from three to ten days later; and 2) was the computerized test more sensitive to the identification of concussion severity when compared to two standard clinical grading scales. Post-concussive symptoms, outcomes, and complications were assessed via telephone follow-up for all subjects. Sixty patients completed
phone follow-up and only 36 patients (60%), however, completed follow-up testing. The median follow-up testing interval was six days post-injury. Traditional concussion grading was reported to not correlate with neurocognitive deficits detected in the ED or at follow-up. The neurocognitive domains of verbal memory, processing speed, and reaction time, on the other hand, were reported to show a correlation, though a statistical threshold for certainty or a statistical correlation was not reported. At two weeks post-injury, 23 patients (41%) had not returned to normal activity. At six weeks, six patients (10%) still had not returned to normal activity. No correlation with return to normal activity was reported. The authors concluded that immediate computerized neuropsychological assessment in the ED can predict neurocognitive deficits seen in follow-up. They further postulated that this information may be used to individualize treatment decisions. Limitations of the study included the small sample size, lack of control group, lack of power to identify a correlation between three days post injury, lack of power to perform a subgroup analysis, incomplete statistical reporting, and lack of comparison to the traditional validated and normed clinical neuropsychological test assessment. The study did not allow, nor draw, conclusions regarding the clinical utility of the intervention.

Lau et al. (2011) conducted a prospective, cohort study (n=108) to evaluate the correlation between performance on computerized neurocognitive testing (ImPACT) in combination with clinical symptoms, with recovery from sports-relate concussion. Male, high-school, football athletes completed a computer-based neurocognitive test battery within 2.23 days of injury and were followed until returned to play, using international guidelines. Athletes were grouped into protracted recovery (>14days; n=50) or short-recovery (≤14 days; n=58). Separate discriminant function analyses were performed using total symptom score on Post-Concussion Symptom Scale (PCSS), symptom clusters (migraine, cognitive, sleep, neuropsychiatric), and ImPACT Assessment and Cognitive Testing neurocognitive scores (verbal memory, visual memory, reaction time, processing speed). Multiple discriminant function analyses revealed that the combination of four symptom clusters and four neurocognitive composite scores had the highest sensitivity (65.22%), specificity (80.36%), positive predictive value (73.17%), and negative predictive value (73.80%) in predicting protracted recovery. Discriminant function analyses of total symptoms on the Post-Concussion Symptom Scale alone had a sensitivity of 40.81%; specificity, 79.31%; positive predictive value, 62.50%; and negative predictive value, 61.33%. The four symptom clusters alone discriminant function analyses had a sensitivity of 46.94%; specificity, 77.20%; positive predictive value, 63.90%; and negative predictive value, 62.86%. Discriminant function analyses of the four computerized neurocognitive scores alone had a sensitivity of 53.20%; specificity, 75.44%; positive predictive value, 64.10%; and negative predictive value, 66.15%. The authors concluded that the use of computerized neurocognitive testing in conjunction with symptom clusters results improves sensitivity, specificity, positive predictive value, and negative predictive value for predicting protracted recovery compared with each used alone. Although the study appears to indicate that the use neuropsychological testing along with symptom assessment may assist in predicting recovery, the results are not robust and do not indicate that this testing should be used for this purpose. The test was not designed to, and did not, address clinical utility.

Maerlander et al. (2010) conducted a study that compared scores across three test batteries in 54 healthy male athletes. The three batteries included the ImPACT test, traditional neuropsychological tests, and several experimental measures used in the assessment of sports-related concussion. The findings concluded that convergent validity was demonstrated for four of the five ImPACT domain scores. However, two cognitive domains, sustained attention and auditory working memory, often compromised as a result of mild TBI did not show convergent validity. Affective symptoms correlated with performance on measures of attention and working memory. The authors concluded that in this healthy sample, the correlations between the domains covered by ImPACT and the neuropsychological battery supports ImPACT as a useful screening tool for assessing some of the cognitive factors related to mild TBI. They recommended, however, that other sources of data should be considered when identifying and managing concussions. Limitations of the study included its focus on reportedly healthy subjects, rather than those with a head injury, and small sample size. Further the study was not designed to, and did not, address clinical utility.

Broglio et al. (2007) utilized a repeated measures design in 118 healthy student volunteers to examine the test-retest reliability of three commercially available computer-based neurocognitive assessments using clinically relevant time frames. The participants completed the ImPACT, Concussion Sentinel, and Headminder Concussion Resolution Index tests on three days: baseline, day 45, and day 50. Each participant also completed the Green Memory and Concentration Test to evaluate effort. Intraclass correlation coefficients were calculated for all output scores generated by each computer program as an estimate of test-retest reliability. Findings
included: the intraclass correlation coefficient estimates from baseline to day 45 assessments ranged from .15 to .39 on the ImPACT, .23 to .65 on the Concussion Sentinel, and .15 to .66 on the Concussion Resolution Index. The intraclass correlation coefficient estimates from the day 45 to day 50 assessments ranged from .39 to .61 on the ImPACT, .39 to .66 on the Concussion Sentinel, and .03 to .66 on the Concussion Resolution Index. Three contemporary computer-based concussion assessment programs evidenced low to moderate test-retest reliability coefficients. It was noted that that the findings do not appear to be due to suboptimal effort or other factors related to poor test performance, since persons identified by individual programs as having poor baseline data were excluded from the analyses. The authors note that until the psychometric properties of these tests can be clarified, clinicians should use a battery of evaluative measures when assessing concussion. Findings from multiple assessment techniques, such as self-reported symptoms, postural control, and neurocognitive performance, should be incorporated into a concussion assessment protocol. The authors concluded that the neurocognitive evaluation should continue to be part of a multifaceted concussion assessment program, with priority given to those scores showing the highest reliability. Limitations of the study included the lack of comparison to standardized and normed tests, its focus on reportedly healthy subjects, rather than those with a head injury, and small sample size. In addition, the study was not designed to, and did not, address clinical utility.

Wild et al. (2008) conducted a systematic review of the status of computerized cognitive testing to detect cognitive decline in the aging population. Due to the heterogeneity across selected studies and test batteries, a quantitative meta-analysis was not possible. The study included review of 11 test batteries that were either developed to screen for cognitive decline in the elderly or have been applied to that indication. In all cases, published research was found that described psychometric properties of these tests. In slightly more than half the tests, normative data for elderly subjects were rated as less than adequate as a result of either small sample size or lack of data specific to older adults in a larger sample. It was noted that reliability data was typically presented in some form, although only three test batteries met the highest rating achieved by describing more than one type of reliability. Few of the batteries are fully self-administered—the tests ranged widely in the amount of interaction required of an examiner. One of the potential advantages of computerized tests is the flexibility in terms of immediate adjustment of performance levels.

Schatz et al. (2005) reported on a retrospective study (N= 72) that examined the diagnostic utility of the composite scores of ImPACT and Post Concussion Symptom Scale scores (PCSS) in recently concussed high school athletes. The patients were tested within 72 hours of sustaining a concussion, and data were compared to non-concussed high school athletes with no history of concussion (N= 66). Between-groups multivariate analysis of variance (MANOVA) revealed a significant multivariate effect of concussion on test performance (p<.001); univariate analysis revealed all six measures contributed to the between-groups differences. A discriminant function analyses was conducted to measure the ability of the five ImPACT composite scores, as well as the PCSS to classify concussion status. One discriminant function was identified that consisted of the Visual Memory, Processing Speed, and Impulse Control composite scores PCSS, which correctly classified 85.5% of the cases. Approximately 82% of participants in the concussion group and 89% of participants in the control group were correctly classified. Using the data, the sensitivity of ImPACT was 81.9%, and the specificity was 89.4%. The investigators concluded that as part of a formal concussion management program, ImPACT may be a useful tool for the assessment of the neurocognitive and neurobehavioral sequelae of concussion, and may also provide post-injury cognitive and symptom data that can assist a practitioner in making return to play decisions. Limitations of the study included its lack of comparison to standardized and normed tests, its small sample size, and retrospective design. Further the study was not designed to, and did not, address clinical utility.

Randolph et al. (2005) conducted a comprehensive literature review in order to assess the impact of neuropsychological testing in sports related concussion. The group included all prospective, controlled studies where the use of neuropsychological testing in sport-related concussion was used as a tool to manage clinical recovery. The group concluded that the degree of test variance after injury is often too subtle to detect statistically significant differences between groups, even during the acute phase of injury (i.e., one–three days post-injury). They concluded that the testing lacked adequate sensitivity or reliability to meet standard psychometric test criteria or clinical utility. They concluded further that it was unclear that testing showed adequate performance to detect impairment once concussion related symptoms, such as headache, had resolved. Since no current guideline for the management of sport-related concussion allows a symptomatic player to return to sport, the incremental utility of neuropsychological testing remains questionable. The authors
concluded that the incremental utility of neuropsychological testing is not demonstrated and recommended that concussion recovery should be monitored by means of standard clinical examination and subjective symptom checklists. They recommended further research in order to establish psychometric validity and clinical utility of the tests.

Repeat Testing
Repeat testing may be medically indicated when there is a significant change in behavior or medical condition and will affect treatment planning. Repeat testing for monitoring of a condition is not considered medically necessary unless it will impact clinical decision-making or level of care planning.

Neuropsychological Testing for Other Conditions
Neuropsychological testing is of limited value in any of the following conditions:

- When the patient has a substance abuse background and either of the following conditions apply:
 - The patient continues to use to an extent that would render test results inaccurate.
 - The patient is not yet 10 or more days post-detoxification.
- When the patient is on certain daily medications (e.g., mood-altering substances or beta-blockers) that may confound interpretation of results, and the drug effects have not been ruled out

There are situations when routine screening of individuals is performed, such as for the purpose of early detection of changes in cognition. The use of neuropsychological testing for screening purposes, in the absence of signs and symptoms, would be considered not medically necessary.

Professional Societies/Organizations—Concussion
American Academy of Neurology (AAN): The AAN published updated evidence-based guidelines for evaluation and management of concussion in sports (Giza, et al., 2013). The guidelines are endorsed by the National Football League Players Association, the Child Neurology Society, the National Association of Emergency Medical Service Physicians, the National Association of School Psychologists, the National Athletic Trainers Association, and the Neurocritical Care Society. The guidelines include the following recommendations:

Regarding the question of diagnostic tools that are useful in identifying athletes suspected of having sustained concussion:

- The reference standard by which these tools were compared was a clinician-diagnosed concussion (by physician or certified athletic trainer). It was noted that none of these tools is intended to "rule out" concussion or to be a substitute for more thorough medical, neurologic, or neuropsychological evaluations.
- Regarding neuropsychological testing the guidelines note that, “Instruments for neuropsychological testing are divided into 2 types on the basis of their method of administration: paper-and-pencil and computer. Both types generally require a neuropsychologist for accurate interpretation, although they may be administered by a non-neuropsychologist. It is likely that neuropsychological testing of memory performance, reaction time, and speed of cognitive processing, regardless of whether administered by paper-and-pencil or computerized method, is useful in identifying the presence of concussion (sensitivity 71%–88% of athletes with concussion) (one Class II study; multiple Class III studies). There is insufficient evidence to support conclusions about the use of neuropsychological testing in identifying concussion in preadolescent age groups.”

Recommendations related to assessment, diagnosis, and management of suspected concussion; and recommendations for management of diagnosed concussion (including acute management, return-to-play, and retirement):

- Regarding return-to-play (RTP) and concussion resolution: Clinical licensed health care providers (LHCPs) might use supplemental information, such as neurocognitive testing or other tools, to assist in determining concussion resolution. This may include but is not limited to resolution of symptoms as determined by standardized checklists and return to age-matched normative values or an individual’s preinjury baseline performance on validated neurocognitive testing (Level C).
- Regarding retirement from play after multiple concussions:
LHCPs might refer professional athletes with a history of multiple concussions and subjective persistent neurobehavioral impairments for neurologic and neuropsychological assessment (Level C).

LCHPs caring for amateur athletes with a history of multiple concussions and subjective persistent neurobehavioral impairments might use formal neurologic/cognitive assessment to help guide retirement-from-play decisions (Level C).

Level C: Possibly effective, ineffective, or harmful (or possibly useful/predictive or not useful/predictive) for the given condition in the specified population. (Level C rating requires at least one Class II study or two consistent Class III studies.)

American Academy of Orthopaedic Surgeons (AAOS): the AAOS published a consensus statement regarding concussion (mild traumatic brain injury) and the team physician (2005/2011). Regarding neuropsychological (NP) testing, the guidelines include:

- It is essential that the team physician understand:
 - NP testing is recommended as an aid to clinical decision-making but not a requirement for concussion management.
 - NP testing is one component of the evaluation process and should not be used as a stand-alone tool to diagnose, manage or make return-to-play decisions in concussion.

- It is desirable that the team physician understand:
 - The indications and limitations of neuropsychological testing.
 - Post-injury neuropsychological test data are more useful if compared to the athlete’s pre-injury baseline.
 - It is unclear what type and content of test data are most valid and valuable.
 - Value of NP testing is enhanced when used as part of a multi-faceted assessment and treatment program.

American Academy of Pediatrics (AAP): The AAP published a clinical report regarding sport-related concussion in children and adolescents (Halstead, et al., 2010). Among the conclusions and guidance the report notes:

- Sport-related concussions are common in youth and high school sports. Limited data are available on concussions in grade school athletes, and further research is needed.
- Concussion has many signs and symptoms, some of which overlap, with other medical conditions. Loss of consciousness is uncommon and if it lasts longer than 30 seconds, it may indicate more significant intracranial injury.
- Results of structural neuroimaging, such as CT or MRI, generally are normal with a concussion.
- Neuropsychological testing can be helpful to provide objective data to athletes and their families after a concussion. Neuropsychological testing is one tool in the complete management of a sport-related concussion and alone does not make a diagnosis or determine when return to play is appropriate.
- Athletes with concussion should rest, both physically and cognitively, until their symptoms have resolved both at rest and with exertion. Teachers and school administrators should work with students to modify workloads to avoid exacerbation of symptoms.
- The signs and symptoms of a concussion typically resolve in seven to ten days in the majority of cases. Some athletes, however, may take weeks to months to recover.
- Any pediatric or adolescent athlete who sustains a concussion should be evaluated by a health care professional, ideally a physician with experience in concussion management, and receive medical clearance before returning to play.
- Pediatric and adolescent athletes should never return to play while symptomatic at rest or with exertion. Athletes also should not be returned to play on the same day of the concussion, even if they become asymptomatic. The recovery course is longer for younger athletes than for college and professional athletes, and a more conservative approach to return to play is warranted.
- The long-term effects of concussion are still relatively unknown, and further longitudinal research is needed to offer further guidance to athletes of all ages.
- Education about sport-related concussion is integral to helping improve awareness, recognition, and management.
• The safety and efficacy of medications in the management of sport-related concussion has not been established.

• Retirement from contact or collision sports may be necessary for the athlete with a history of multiple concussions or with long symptomatic courses after his or her concussion.

• New evidence-based protocols for the diagnosis and management of concussion should be incorporated into pediatric training modules and competencies.

American Medical Society for Sports Medicine (AMSSM): the AMSSM published a position statement regarding concussion in sport (Harmon, et al., 2013). The statement is endorsed by the National Trainers’ Athletic Association and the American College of Sports Medicine.

Recommendations for diagnosis of concussion include:

- Concussion remains a clinical diagnosis ideally made by a healthcare provider familiar with the athlete and knowledgeable in the recognition and evaluation of concussion.

- Graded symptom checklists provide an objective tool for assessing a variety of symptoms related to concussions, while also tracking the severity of those symptoms over serial evaluations.

- Standardized assessment tools provide a helpful structure for the evaluation of concussion, although limited validation of these assessment tools is available.

Recommendations for sideline evaluation and management of concussion include (Strength of recommendation C*):

- Any athlete suspected of having a concussion should be stopped from playing and assessed by a licensed healthcare provider trained in the evaluation and management of concussions.

- Recognition and initial assessment of a concussion should be guided by a symptoms checklist, cognitive evaluation (including orientation, past and immediate memory, new learning and concentration), balance tests and further neurological physical examination.

- While standardized sideline tests are a useful framework for examination, the sensitivity, specificity, validity and reliability of these tests among different age groups, cultural groups and settings is largely undefined. Their practical usefulness with or without an individual baseline test is also largely unknown.

- Balance disturbance is a specific indicator of a concussion, but not very sensitive. Balance testing on the sideline may be substantially different than baseline tests because of differences in shoe/cleat-type or surface, use of ankle tape or braces, or the presence of other lower extremity injury.

- There is no same day return-to-play for an athlete diagnosed with a concussion.

- Athletes suspected or diagnosed with a concussion should be monitored for deteriorating physical or mental status.

Recommendations regarding neuropsychological testing include (Strength of recommendation C*):

- Neuropsychological (NP) tests are an objective measure of brain–behavior relationships and are more sensitive for subtle cognitive impairment than clinical exam.

- Most concussions can be managed appropriately without the use of NP testing.

- Computerized neuropsychological (CNP) testing should be interpreted by healthcare professionals trained and familiar with the type of test and the individual test limitations, including a knowledgeable assessment of the reliable change index, baseline variability and false-positive and false negative rates.

- Paper and pencil NP tests can be more comprehensive, test different domains and assess for other conditions which may masquerade as or complicate assessment of concussion.

- NP testing should be used only as part of a comprehensive concussion management strategy and should not be used in isolation.

- The ideal timing, frequency and type of NP testing have not been determined.

- In some cases, properly administered and interpreted NP testing provides an added value to assess cognitive function and recovery in the management of sports concussions.

- It is unknown if use of NP testing in the management of sports concussion helps prevent recurrent concussion, catastrophic injury or long term complications.

- Comprehensive NP evaluation is helpful in the post-concussion management of athletes with persistent symptoms or complicated courses.
The 4th International Conference on Concussion in Sport: A consensus statement on concussion in sport was published by this conference (McCrory, et al., 2013). The guidelines include:

- The majority (80–90%) of concussions resolve in a short (7–10 day) period, although the recovery time frame may be longer in children and adolescents.
- The cornerstone of concussion management is physical and cognitive rest until the acute symptoms resolve and then a graded program of exertion prior to medical clearance and return to play.

Regarding neuropsychological assessment, the guidelines include the following:

- The application of neuropsychological (NP) testing in concussion has been shown to be of clinical value and contributes significant information in concussion evaluation.
- NP assessment should not be the sole basis of management decisions. It should be seen as an aid to the clinical decision-making process in conjunction with a range of assessments of different clinical domains and investigational results.
- Formal NP testing is not required for all athletes, however when this is considered necessary then it should ideally be performed by a trained neuropsychologist.
- NP testing may be used to assist return to play decisions and is typically performed when an athlete is clinically asymptomatic, however NP assessment may add important information in the early stages following injury.
- There may be particular situations where testing is performed early to assist in determining aspects of management e.g., return to school in a pediatric athlete. This is usually best determined in consultation with a trained neuropsychologist.
- Baseline NP testing was considered by the panel and was not felt to be required as a mandatory aspect of every assessment, however may be helpful or add useful information to the overall interpretation of these tests. At present, there is insufficient evidence to recommend the widespread routine use of baseline neuropsychological testing.

These are consensus guidelines and it is not clear whether these conclusions are based on a methodologically rigorous systematic evaluation of the published evidence. The guidelines do not address the incremental clinical value of neuropsychological testing on health outcomes compared to the information that is available from clinical assessment. The guidelines do not address the clinical utility of testing once the symptoms have resolved. The clinical value that is referred to in the guidelines is related to sport concussion and return-to-play. The guidelines do not appear to demonstrate the clinical validity of neuropsychological testing for the evaluation of concussion.

Professional Societies/Organizations—Other Conditions

American Academy of Child and Adolescent Psychiatry (AACAP): The AACAP published practice parameters for the assessment and treatment of children and adolescents with ADHD (Pliszka, et al., 2007). Regarding neuropsychological testing the parameters note that this testing is not required as part of a routine assessment for ADHD, but may be indicated by the findings of the standard psychological assessment.

- Neuropsychologic batteries are useful instruments in identifying patients with dementia, particularly when administered to an increased-risk (by virtue of memory impairment) population. Those neuropsychologic instruments that emphasize memory function are most useful.
• Interview-based techniques may be considered in identifying patients with dementia, particularly when administered to a population at increased risk of cognitive impairment.

In a practice parameter update on the evaluation and management of driving risk in dementia, the AAN states that there is insufficient evidence to recommend neuropsychological testing to predict driving capability among patients with dementia (Iverson et al. 2010).

• Neuropsychological testing may help in deciding whether a patient with subtle or atypical symptoms actually has dementia as well as in more thoroughly characterizing an unusual symptom picture.
• Testing may help to characterize the extent of cognitive impairment, to distinguish among the types of dementias, and to establish baseline cognitive function.
• Testing may also help identify strengths and weaknesses that could guide expectations for the patient, direct interventions to improve overall function, assist with communication, and inform capacity determinations.

The guidelines notes that mild cognitive impairment is a term used to represent a variety of mild cognitive syndromes manifested by a modest but detectable decline in cognitive function in the setting of largely intact functional status (American Psychiatric Association, 2007). There are a variety of research definitions for mild cognitive impairment, but there is no consensus on the optimal definition. The most widely accepted definition requires the following:

• subjective cognitive complaints
• evidence of objective deficits in cognitive function based on age- and education-adjusted norms on standardized neuropsychological tests
• intact daily functioning,
• evidence of cognitive decline from a prior level
• evidence of not meeting the criteria for dementia

American Psychological Association: the American Psychological Association published updated guidelines for the evaluation of dementia and age-related cognitive change (American Psychological Association, 2011). The guidelines include the following regarding neuropsychological testing for this condition:

• Neuropsychological evaluation and cognitive testing remain among the most effective differential diagnostic methods in discriminating pathophysiological dementia from age-related cognitive decline, cognitive difficulties that are depression-related, and other related disorders
• Comprehensive neuropsychological evaluations for dementia and cognitive change include tests of multiple cognitive domains, typically including memory, attention, perceptual and motor skills, language, visuospatial abilities, reasoning, and executive functions. Measures of mood and personality may be relevant in many cases. Psychologists are encouraged to refer to current compendia resources and the clinical research literature in selecting assessment instruments.
• Technology assisted assessments (e.g., computer administered cognitive batteries, tele-health visits) are rapidly advancing but appropriate psychometric properties and normative data are nascent. These technologies may have significant advantages for older persons with limited mobility or health-care access, but may also disadvantage older persons with limited experience and expertise interacting with technology.
• Psychologists are encouraged to use standardized, reliable, and valid tests. Whether traditional or technology-assisted, appropriate tests have normative data for the age range of the person being assessed and are suitable for the individual’s ethnicity, race, and educational background. In particular, the positive and negative predictive values of the instruments are considered when selecting tests for dementia, cognitive impairment, and age-related cognitive change. Furthermore, testing instruments should be sensitive to subtle changes in cognitive function over time.

National Institute on Aging-Alzheimer’s Association: These organizations published criteria for the symptomatic predementia phase of Alzheimer’s disease (AD), referred to in the criteria as mild cognitive impairment due to AD. The workgroup developed the following two sets of criteria. One is for core clinical criteria that can be used by healthcare providers without access to advanced imaging techniques or cerebrospinal fluid
The second criteria is research criteria that could be used in clinical research settings, including clinical trials. The second set of criteria incorporate the use of biomarkers based on imaging and cerebrospinal fluid measures. The final set of criteria for mild cognitive impairment due to AD has four levels of certainty, depending on the presence and nature of the biomarker findings. The authors note that considerable work is needed to validate the criteria that use biomarkers and to standardize biomarker analysis for use in community settings.

U.S. Preventive Services Task Force (USPSTF): The USPSTF published a statement regarding screening for cognitive impairment in older adults. The statement concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening for cognitive impairment (USPTF, 2014).

Use Outside of the US

European Federation of Neurological Societies (EFNS)
The EFNS published guidelines for the diagnosis and management of Alzheimer's disease (Hort, et al., 2010). The guidelines note that, “Quantitative neuropsychological testing should be made in patients with questionable or very early Alzheimer's disease (AD)” (Level B).

Level B rating: (established as probably useful/predictive or not useful/predictive) requires at least one convincing class II study or overwhelming class III evidence.

The EFNS published clinical guidelines Clinical Management of Amyotrophic Lateral Sclerosis (MALS) (2012). Included in the recommendation is, “Those with evidence of early language deficits should undergo full neuropsychological testing (GCPP)*”.

* GCPP: Where there was lack of evidence but consensus was clear, opinion stated as Good Clinical Practice Points

The EFNS published recommendations for the diagnosis of Parkinson’s disease (PD) (Berardell, et al., 2013). The recommendations include, “Neuropsychological testing, functional and structural neuroimaging investigations should be primarily performed to exclude other causes of Parkinsonism in patients with suspected PD (Level A)”.

Agency for Health Quality and Assessment of Catalonia (AQuAS) (Spain): published clinical practice guideline on the comprehensive care of people with Alzheimer’s disease and other dementias. The guidelines include the recommendations (2010):

- Patients with cognitive complaints must be assessed by means of global cognition screen tests, neuropsychological test batteries, short cognitive instruments focused on specific aspects of cognition and/or standardized structured questionnaires to quantify the degree of cognitive impairment.(grade B)
- The neuropsychological examination using general brief-intermediate type evaluation tests is recommended when the aim is to make an evaluation of the most important neuropsychological areas in a reasonable time. (grade B)

Grade B: A body of evidence including studies rated as 2++, directly applicable to the target population of the guideline and demonstrating overall consistency of results; or extrapolated evidence from studies rated as 1++ or 1+.
1++ : High quality meta-analyses, systematic reviews of clinical trials or high-quality clinical trials with a very low risk of bias.
1+ : Well-conducted meta-analyses, systematic reviews of clinical trials or well conducted clinical trials with a very low risk of bias.
2++ : High-quality systematic reviews of case control or cohort of studies. Well-conducted studies of case control or cohort studies with a very low risk of confounding or bias and a high probability that the relationship is causal.
Medical Coverage Policy: 0258

International Society for Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN): A guideline prepared by the Commission on Neuropsychological Assessment of Hepatic Encephalopathy appointed by the ISHEN states that neuropsychological testing is an established methodology for quantifying cognitive impairment due to various forms of encephalopathy, including low-grade or minimal hepatic encephalopathy (Randolph, 2009).

National Institute for Health and Clinical Excellence (NICE) (United Kingdom [UK]): NICE published clinical guidelines for diagnosis and management of the epilepsies in adults and children (2012). Regarding neuropsychological assessment, the guidelines note that

- Neuropsychological assessment should be considered in children, young people and adults in whom it is important to evaluate learning disabilities and cognitive dysfunction, particularly in regard to language and memory.
- Referral for a neuropsychological assessment is indicated:
 - when a child, young person or adult with epilepsy is having educational or occupational difficulties
 - when an MRI has identified abnormalities in cognitively important brain regions
 - when a child, young person or adult complains of memory or other cognitive deficits and/or cognitive decline

NICE published guidelines for dementia (2012; 2016). The guidelines note, “Formal neuropsychological testing should form part of the assessment in cases of mild or questionable dementia.”

Ontario Neurotrauma Foundation (ONF): published guidelines for concussion/mild traumatic brain injury and persistent symptoms (ONF, 2013; Marshall, et al., 2012). The guidelines apply to adults over age 18. Regarding persistent cognitive difficulties, the guidelines note, “Patients who have cognitive symptoms that are not resolving and continue to interfere in daily functioning (e.g., school, work) should be considered for referral for neuropsychological assessment. The evaluation may assist in clarifying appropriate treatment options based on individual patient characteristics and conditions.” (Grade A)

Grade A: evidence included at least 1 randomized controlled trial, meta-analysis, or systematic review

Coding/Billing Information

Note: 1) This list of codes may not be all-inclusive.
 2) Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement.

Covered when medically necessary:

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>96116</td>
<td>Neurobehavioral status exam (clinical assessment of thinking, reasoning and judgment, eg, acquired knowledge, attention, language, memory, planning and problem solving, and visual spatial abilities), per hour of the psychologist’s or physician’s time, both face-to-face time with the patient and time interpreting test results and preparing the report</td>
</tr>
<tr>
<td>96118</td>
<td>Neuropsychological testing (eg, Halstead-Reitan Neuropsychological Battery, Wechsler Memory Scales and Wisconsin Card Sorting Test), per hour of the psychologist’s or physician’s time, both face-to-face time administering tests to the patient and time interpreting these test results and preparing the report</td>
</tr>
<tr>
<td>96119</td>
<td>Neuropsychological testing (eg, Halstead-Reitan Neuropsychological Battery, Wechsler Memory Scales and Wisconsin Card Sorting Test), with qualified health care professional interpretation and report, administered by technician, per hour of technician time, face-to-face</td>
</tr>
<tr>
<td>96120</td>
<td>Neuropsychological testing (eg, Wisconsin Card Sorting Test), administered by a computer, with qualified health care professional interpretation and report</td>
</tr>
<tr>
<td>ICD-9-CM Diagnosis Codes</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>013.60-013.66</td>
<td>Tuberculosis encephalitis or myelitis</td>
</tr>
<tr>
<td>036.1</td>
<td>Meningococcal encephalitis</td>
</tr>
<tr>
<td>042</td>
<td>Human immunodeficiency virus [HIV] disease</td>
</tr>
<tr>
<td>046.0-046.9</td>
<td>Slow virus infections and prion diseases of central nervous system</td>
</tr>
<tr>
<td>047.9</td>
<td>Unspecified viral meningitis</td>
</tr>
<tr>
<td>048</td>
<td>Other enterovirus diseases of central nervous system</td>
</tr>
<tr>
<td>049.8</td>
<td>Other specified non-arthropod-borne viral diseases of central nervous system</td>
</tr>
<tr>
<td>049.9</td>
<td>Unspecified non-arthropod-borne viral diseases of central nervous system</td>
</tr>
<tr>
<td>054.3</td>
<td>Herpetic meningoencephalitis</td>
</tr>
<tr>
<td>056.01</td>
<td>Encephalomyelitis due to rubella</td>
</tr>
<tr>
<td>062.0-062.9</td>
<td>Mosquito-borne viral encephalitis</td>
</tr>
<tr>
<td>063.0-063.9</td>
<td>Tick-borne viral encephalitis</td>
</tr>
<tr>
<td>064</td>
<td>Viral encephalitis transmitted by other and unspecified arthropods</td>
</tr>
<tr>
<td>066.41</td>
<td>West Nile fever with encephalitis</td>
</tr>
<tr>
<td>072.2</td>
<td>Mumps encephalitis</td>
</tr>
<tr>
<td>080-088.9</td>
<td>Rickettsioses and other arthropod-borne diseases</td>
</tr>
<tr>
<td>090.41</td>
<td>Congenital syphilitic encephalitis</td>
</tr>
<tr>
<td>094.81</td>
<td>Syphilitic encephalitis</td>
</tr>
<tr>
<td>115.01</td>
<td>Histoplasma capsulatum meningitis</td>
</tr>
<tr>
<td>115.11</td>
<td>Histoplasma duboisi meningitis</td>
</tr>
<tr>
<td>115.91</td>
<td>Unspecified Histoplasmosis meningitis</td>
</tr>
<tr>
<td>130.0</td>
<td>Meningoencephalitis due to toxoplasmosis</td>
</tr>
<tr>
<td>137.1</td>
<td>Late effects of central nervous system tuberculosis</td>
</tr>
<tr>
<td>138</td>
<td>Late effects of acute poliomyelitis</td>
</tr>
<tr>
<td>139.0</td>
<td>Late effects of viral encephalitis</td>
</tr>
<tr>
<td>191.0 – 191.9</td>
<td>Malignant neoplasm of brain</td>
</tr>
<tr>
<td>192.0 – 192.9</td>
<td>Malignant neoplasm of other and unspecified parts of nervous system</td>
</tr>
<tr>
<td>198.3</td>
<td>Secondary malignant neoplasm of other specified sites, brain and spinal cord</td>
</tr>
<tr>
<td>225.0</td>
<td>Benign neoplasm of brain and other parts of nervous system, brain</td>
</tr>
<tr>
<td>225.1</td>
<td>Benign neoplasm of cranial nerves</td>
</tr>
<tr>
<td>225.3</td>
<td>Benign neoplasm of spinal cord</td>
</tr>
<tr>
<td>225.8</td>
<td>Benign neoplasm of other specified sites of nervous system</td>
</tr>
<tr>
<td>225.9</td>
<td>Benign neoplasm of nervous system, part unspecified</td>
</tr>
<tr>
<td>237.5</td>
<td>Neoplasm of uncertain behavior of endocrine gland and nervous system, brain and spinal cord</td>
</tr>
<tr>
<td>237.6</td>
<td>Neoplasm of uncertain behavior of meninges</td>
</tr>
<tr>
<td>237.9</td>
<td>Neoplasm of uncertain behavior of other and unspecified parts of nervous system</td>
</tr>
<tr>
<td>239.6</td>
<td>Neoplasm of unspecified nature, brain</td>
</tr>
<tr>
<td>290.0</td>
<td>Senile dementia, uncomplicated</td>
</tr>
<tr>
<td>290.10-290.13</td>
<td>Presenile dementia</td>
</tr>
<tr>
<td>290.20-290.21</td>
<td>Senile dementia with delusional or depressive features</td>
</tr>
<tr>
<td>290.3</td>
<td>Senile dementia with delirium</td>
</tr>
<tr>
<td>290.40-290.43</td>
<td>Vascular dementia</td>
</tr>
<tr>
<td>294.0</td>
<td>Amnestic disorder in conditions classified elsewhere</td>
</tr>
<tr>
<td>294.10</td>
<td>Dementia in conditions classified elsewhere without behavioral disturbance</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>294.11</td>
<td>Dementia in conditions classified elsewhere with behavioral disturbance</td>
</tr>
<tr>
<td>294.20</td>
<td>Dementia, unspecified, without behavioral disturbance</td>
</tr>
<tr>
<td>294.21</td>
<td>Dementia, unspecified, with behavioral disturbance</td>
</tr>
<tr>
<td>310.2</td>
<td>Postconcussion syndrome</td>
</tr>
<tr>
<td>310.89</td>
<td>Other specified nonpsychotic mental disorders following organic brain damage</td>
</tr>
<tr>
<td>320.0 – 320.9</td>
<td>Bacterial meningitis</td>
</tr>
<tr>
<td>321.1</td>
<td>Meningitis in other fungal diseases</td>
</tr>
<tr>
<td>321.2</td>
<td>Meningitis due to viruses not elsewhere classified</td>
</tr>
<tr>
<td>321.3</td>
<td>Meningitis due to trypanosomiasis</td>
</tr>
<tr>
<td>321.4</td>
<td>Meningitis in sarcoidosis</td>
</tr>
<tr>
<td>321.8</td>
<td>Meningitis due to other nonbacterial organisms classified elsewhere</td>
</tr>
<tr>
<td>322.0</td>
<td>Nonpyogenic meningitis</td>
</tr>
<tr>
<td>322.1</td>
<td>Eosinophilic meningitis</td>
</tr>
<tr>
<td>322.2</td>
<td>Chronic meningitis</td>
</tr>
<tr>
<td>322.9</td>
<td>Meningitis, unspecified</td>
</tr>
<tr>
<td>323.01</td>
<td>Encephalitis and encephalomyelitis in viral diseases classified elsewhere</td>
</tr>
<tr>
<td>323.02</td>
<td>Myelitis in viral diseases classified elsewhere</td>
</tr>
<tr>
<td>323.1</td>
<td>Encephalitis, myelitis, and encephalomyelitis in rickettsial diseases classified elsewhere</td>
</tr>
<tr>
<td>323.2</td>
<td>Encephalitis, myelitis and encephalomyelitis in protozoal diseases classified elsewhere</td>
</tr>
<tr>
<td>323.41</td>
<td>Other encephalitis and encephalomyelitis due to infection classified elsewhere</td>
</tr>
<tr>
<td>323.42</td>
<td>Other myelitis due to other infections classified elsewhere</td>
</tr>
<tr>
<td>323.51</td>
<td>Encephalitis and encephalomyelitis following immunization procedures</td>
</tr>
<tr>
<td>323.52</td>
<td>Myelitis following immunization procedures</td>
</tr>
<tr>
<td>323.61</td>
<td>Infectious acute disseminated encephalomyelitis [ADEM]</td>
</tr>
<tr>
<td>323.62</td>
<td>Other postinfectious encephalitis and encephalomyelitis</td>
</tr>
<tr>
<td>323.63</td>
<td>Postinfectious myelitis</td>
</tr>
<tr>
<td>323.71</td>
<td>Toxic encephalitis and encephalomyelitis</td>
</tr>
<tr>
<td>323.81</td>
<td>Other causes of encephalitis and encephalomyelitis</td>
</tr>
<tr>
<td>323.82</td>
<td>Other causes of myelitis</td>
</tr>
<tr>
<td>323.9</td>
<td>Unspecified cause of encephalitis, myelitis, and encephalomyelitis</td>
</tr>
<tr>
<td>324.0</td>
<td>Intracranial abscess</td>
</tr>
<tr>
<td>324.1</td>
<td>Intraspinal abscess</td>
</tr>
<tr>
<td>324.9</td>
<td>Intracranial and intraspinal abscess of unspecified site</td>
</tr>
<tr>
<td>325</td>
<td>Phlebitis and thrombophlebitis of intracranial venous sinuses</td>
</tr>
<tr>
<td>326</td>
<td>Late effects of intracranial abscess or pyogenic infection</td>
</tr>
<tr>
<td>331.0</td>
<td>Alzheimer's disease</td>
</tr>
<tr>
<td>331.11</td>
<td>Pick's disease</td>
</tr>
<tr>
<td>331.19</td>
<td>Other frontotemporal dementia</td>
</tr>
<tr>
<td>331.2</td>
<td>Senile degeneration of the brain</td>
</tr>
<tr>
<td>331.3</td>
<td>Communicating hydrocephalus</td>
</tr>
<tr>
<td>331.4</td>
<td>Obstructive hydrocephalus</td>
</tr>
<tr>
<td>331.6</td>
<td>Corticobasal degeneration</td>
</tr>
<tr>
<td>331.7</td>
<td>Cerebral degeneration in diseases classified elsewhere</td>
</tr>
<tr>
<td>331.81</td>
<td>Reye's syndrome</td>
</tr>
<tr>
<td>331.82</td>
<td>Dementia with Lewy bodies</td>
</tr>
<tr>
<td>331.83</td>
<td>Mild cognitive impairment, so stated</td>
</tr>
<tr>
<td>331.89</td>
<td>Other cerebral degeneration</td>
</tr>
<tr>
<td>331.9</td>
<td>Cerebral degeneration, unspecified</td>
</tr>
<tr>
<td>332.0–332.9</td>
<td>Parkinson's disease</td>
</tr>
<tr>
<td>333.0</td>
<td>Other degenerative diseases of the basal ganglia</td>
</tr>
<tr>
<td>333.4</td>
<td>Huntington's chorea</td>
</tr>
<tr>
<td>333.5</td>
<td>Other choras</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>340</td>
<td>Multiple sclerosis</td>
</tr>
<tr>
<td>341.8</td>
<td>Other demyelinating diseases of central nervous system</td>
</tr>
<tr>
<td>341.9</td>
<td>Unspecified demyelinating disease of central nervous system</td>
</tr>
<tr>
<td>345.00-345.91</td>
<td>Epilepsy and recurrent seizures</td>
</tr>
<tr>
<td>348.1</td>
<td>Anoxic brain damage</td>
</tr>
<tr>
<td>348.30</td>
<td>Encephalopathy, unspecified</td>
</tr>
<tr>
<td>348.39</td>
<td>Other encephalopathy</td>
</tr>
<tr>
<td>349.9</td>
<td>Unspecified disorders of nervous system</td>
</tr>
<tr>
<td>430</td>
<td>Subarachnoid hemorrhage</td>
</tr>
<tr>
<td>431</td>
<td>Intracerebral hemorrhage</td>
</tr>
<tr>
<td>432.0-432.9</td>
<td>Other and unspecified intracranial hemorrhage</td>
</tr>
<tr>
<td>433.01</td>
<td>Occlusion and stenosis of basilar artery with cerebral infarction</td>
</tr>
<tr>
<td>433.11</td>
<td>Occlusion and stenosis of carotid artery with cerebral infarction</td>
</tr>
<tr>
<td>433.21</td>
<td>Occlusion and stenosis of vertebral artery with cerebral infarction</td>
</tr>
<tr>
<td>433.31</td>
<td>Occlusion and stenosis of multiple and bilateral precerebral arteries with cerebral infarction</td>
</tr>
<tr>
<td>433.81</td>
<td>Occlusion and stenosis of other specified precerebral artery with cerebral infarction</td>
</tr>
<tr>
<td>433.91</td>
<td>Occlusion and stenosis of unspecified precerebral artery with cerebral infarction</td>
</tr>
<tr>
<td>434.01</td>
<td>Occlusion of cerebral arteries, cerebral thrombosis with cerebral infarction</td>
</tr>
<tr>
<td>434.11</td>
<td>Occlusion of cerebral arteries, cerebral embolism with cerebral infarction</td>
</tr>
<tr>
<td>434.91</td>
<td>Occlusion of cerebral arteries, cerebral artery occlusion, unspecified with cerebral infarction</td>
</tr>
<tr>
<td>438.0</td>
<td>Late effects of cerebrovascular disease; cognitive deficits</td>
</tr>
<tr>
<td>438.89</td>
<td>Other late effects of cerebrovascular disease</td>
</tr>
<tr>
<td>742.9</td>
<td>Unspecified anomaly of brain, spinal cord, and nervous system</td>
</tr>
<tr>
<td>747.81</td>
<td>Congenital anomalies of cerebrovascular system</td>
</tr>
<tr>
<td>780.33</td>
<td>Post traumatic seizures</td>
</tr>
<tr>
<td>780.39</td>
<td>Other convulsions</td>
</tr>
<tr>
<td>780.93</td>
<td>Other general symptoms, memory loss</td>
</tr>
<tr>
<td>799.01</td>
<td>Other ill-defined and unknown causes of morbidity and mortality; asphyxia</td>
</tr>
<tr>
<td>799.02</td>
<td>Other ill-defined and unknown causes of morbidity and mortality; hypoxemia</td>
</tr>
<tr>
<td>800.10-800.49†</td>
<td>Fracture of vault of skull, closed</td>
</tr>
<tr>
<td>800.60-800.99†</td>
<td>Fracture of vault of skull, open</td>
</tr>
<tr>
<td>801.10-801.49†</td>
<td>Fracture of base of skull, closed</td>
</tr>
<tr>
<td>801.60-801.99†</td>
<td>Fracture of base of skull, open</td>
</tr>
<tr>
<td>803.10-803.49†</td>
<td>Other and unqualified skull fracture, closed</td>
</tr>
<tr>
<td>803.60-803.99†</td>
<td>Other and unqualified skull fracture, open</td>
</tr>
<tr>
<td>804.10-804.49†</td>
<td>Multiple fractures involving skull or face with other bones, closed</td>
</tr>
<tr>
<td>804.60-804.99†</td>
<td>Multiple fractures involving skull or face with other bones, open</td>
</tr>
<tr>
<td>851.00-851.99†</td>
<td>Cerebral laceration and contusion</td>
</tr>
<tr>
<td>852.00-852.59†</td>
<td>Subarachnoid, subdural, and extradural hemorrhage, following injury</td>
</tr>
<tr>
<td>853.00-</td>
<td>Other and unspecified intracranial hemorrhage following injury</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>853.19†</td>
<td>Intracranial injury of other and unspecified nature</td>
</tr>
<tr>
<td>854.00 – 854.19†</td>
<td>Late effect of intracranial injury without mention of skull fracture</td>
</tr>
<tr>
<td>907.0</td>
<td>Late effects of radiation</td>
</tr>
<tr>
<td>990</td>
<td>Effects of radiation, unspecified</td>
</tr>
<tr>
<td>997.01</td>
<td>Central nervous system complication</td>
</tr>
<tr>
<td>997.02</td>
<td>Iatrogenic cerebrovascular infarction or hemorrhage</td>
</tr>
</tbody>
</table>

†Note: Coverage will not be provided for any diagnosis in this range that is reported with a fifth digit of “5” (with prolonged [more than 24 hours] loss of consciousness, without return to pre-existing conscious level).

<table>
<thead>
<tr>
<th>ICD-10-CM Diagnosis Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A17.82</td>
<td>Tuberculosis meningoencephalitis</td>
</tr>
<tr>
<td>A17.83</td>
<td>Tuberculosis neuritis</td>
</tr>
<tr>
<td>A39.81</td>
<td>Meningococcal encephalitis</td>
</tr>
<tr>
<td>A44.0- A44.9</td>
<td>Systemic bartonellosis</td>
</tr>
<tr>
<td>A50.42</td>
<td>Late congenital syphilitic encephalitis</td>
</tr>
<tr>
<td>A52.14</td>
<td>Late syphilitic encephalitis</td>
</tr>
<tr>
<td>A68.0</td>
<td>Louse-borne relapsing fever</td>
</tr>
<tr>
<td>A68.1</td>
<td>Tick-borne relapsing fever</td>
</tr>
<tr>
<td>A68.9</td>
<td>Relapsing fever, unspecified</td>
</tr>
<tr>
<td>A69.20</td>
<td>Lyme disease, unspecified</td>
</tr>
<tr>
<td>A69.21</td>
<td>Meningitis due to Lyme disease</td>
</tr>
<tr>
<td>A69.22</td>
<td>Other neurologic disorders in Lyme disease</td>
</tr>
<tr>
<td>A75.0- A75.9</td>
<td>Typhus fever</td>
</tr>
<tr>
<td>A77.0- A77.9</td>
<td>Spotted fever (tick-borne rickettsioses)</td>
</tr>
<tr>
<td>A78</td>
<td>Q fever</td>
</tr>
<tr>
<td>A79.0 – A79.9</td>
<td>Other rickettsioses</td>
</tr>
<tr>
<td>A81.00- A81.9</td>
<td>Atypical virus infections of the central nervous system caused by prions</td>
</tr>
<tr>
<td>A83.0- A83.9</td>
<td>Mosquito-borne viral encephalitis</td>
</tr>
<tr>
<td>A84.0- A84.9</td>
<td>Tick-borne viral encephalitis</td>
</tr>
<tr>
<td>A85.0- A85.8</td>
<td>Other viral encephalitis, not elsewhere classified</td>
</tr>
<tr>
<td>A86</td>
<td>Unspecified viral encephalitis</td>
</tr>
<tr>
<td>A88.0</td>
<td>Enteroviral exanthematous fever [Boston exanthem]</td>
</tr>
<tr>
<td>A88.8</td>
<td>Other specified viral infections of central nervous system</td>
</tr>
<tr>
<td>A89</td>
<td>Unspecified viral infection of central nervous system</td>
</tr>
<tr>
<td>A92.31</td>
<td>West Nile virus infection with encephalitis</td>
</tr>
<tr>
<td>B00.4</td>
<td>Herpesviral encephalitis</td>
</tr>
<tr>
<td>B06.01</td>
<td>Rubella encephalitis</td>
</tr>
<tr>
<td>B20</td>
<td>Human immunodeficiency virus [HIV] disease</td>
</tr>
<tr>
<td>B26.2</td>
<td>Mumps encephalitis</td>
</tr>
<tr>
<td>B50.0-</td>
<td>Plasmodium falciparum malaria</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>B50.9</td>
<td>Plasmodium vivax malaria</td>
</tr>
<tr>
<td>B51.0</td>
<td>Plasmodium malariae malaria</td>
</tr>
<tr>
<td>B51.9</td>
<td>Plasmodium ovale malaria</td>
</tr>
<tr>
<td>B52.0</td>
<td>Malaria due to simian plasmodia</td>
</tr>
<tr>
<td>B52.9</td>
<td>Other malaria, not elsewhere classified</td>
</tr>
<tr>
<td>B54</td>
<td>Unspecified malaria</td>
</tr>
<tr>
<td>B55.0</td>
<td>Leishmaniasis</td>
</tr>
<tr>
<td>B55.9</td>
<td>African trypanosomiasis</td>
</tr>
<tr>
<td>B57.0</td>
<td>Acute Chagas’ disease with heart involvement</td>
</tr>
<tr>
<td>B57.1</td>
<td>Acute Chagas’ disease without heart involvement</td>
</tr>
<tr>
<td>B57.2</td>
<td>Chagas’ disease (chronic) with heart involvement</td>
</tr>
<tr>
<td>B57.40-</td>
<td>Chagas’ disease (chronic) with nervous system involvement</td>
</tr>
<tr>
<td>B57.49</td>
<td></td>
</tr>
<tr>
<td>B58.2</td>
<td>Toxoplasma meningoencephalitis</td>
</tr>
<tr>
<td>B60.0</td>
<td>Babesiosis</td>
</tr>
<tr>
<td>B60.8</td>
<td>Other specified protozoal diseases</td>
</tr>
<tr>
<td>B64</td>
<td>Unspecified protozoal disease</td>
</tr>
<tr>
<td>B90.0</td>
<td>Sequelae of central nervous system tuberculosis</td>
</tr>
<tr>
<td>B91</td>
<td>Sequelae of poliomyelitis</td>
</tr>
<tr>
<td>B94.1</td>
<td>Sequelae of viral encephalitis</td>
</tr>
<tr>
<td>C70.0-C70.9</td>
<td>Malignant neoplasm of meninges</td>
</tr>
<tr>
<td>C71.0-C71.9</td>
<td>Malignant neoplasm of brain</td>
</tr>
<tr>
<td>C72.0-C72.9</td>
<td>Malignant neoplasm of spinal cord, cranial nerves and other parts of central nervous system</td>
</tr>
<tr>
<td>C79.31</td>
<td>Secondary malignant neoplasm of brain</td>
</tr>
<tr>
<td>C79.32</td>
<td>Secondary malignant neoplasm of cerebral meninges</td>
</tr>
<tr>
<td>D33.0-D33.9</td>
<td>Benign neoplasm of brain and other parts of central nervous system</td>
</tr>
<tr>
<td>D42.0</td>
<td>Neoplasm of uncertain behavior of cerebral meninges</td>
</tr>
<tr>
<td>D43.0-D43.9</td>
<td>Neoplasm of uncertain behavior of brain and central nervous system</td>
</tr>
<tr>
<td>D49.6</td>
<td>Neoplasm of unspecified behavior of brain</td>
</tr>
<tr>
<td>F01.50-F01.51</td>
<td>Vascular dementia</td>
</tr>
<tr>
<td>F02.80-F02.81</td>
<td>Dementia in other diseases classified elsewhere</td>
</tr>
<tr>
<td>F03.90-F03.91</td>
<td>Unspecified dementia</td>
</tr>
<tr>
<td>F04</td>
<td>Amnestic disorder due to known physiological condition</td>
</tr>
<tr>
<td>F05</td>
<td>Delirium due to known physiological condition</td>
</tr>
<tr>
<td>F06.0-F06.8</td>
<td>Other mental disorders due to known physiological condition</td>
</tr>
<tr>
<td>F07.81</td>
<td>Postconcussional syndrome</td>
</tr>
<tr>
<td>F07.89</td>
<td>Other personality and behavioral disorders due to known physiological condition</td>
</tr>
<tr>
<td>F07.9</td>
<td>Unspecified personality and behavioral disorder due to known physiological condition</td>
</tr>
<tr>
<td>F09</td>
<td>Unspecified mental disorder due to known physiological condition</td>
</tr>
<tr>
<td>F10.10</td>
<td>Alcohol related disorders</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>F10.99</td>
<td>Opioid related disorders</td>
</tr>
<tr>
<td>F11.10-</td>
<td>Sedative, hypnotic or anxiolytic related disorders</td>
</tr>
<tr>
<td>F11.99</td>
<td></td>
</tr>
<tr>
<td>F13.10-</td>
<td>Cocaine related disorders</td>
</tr>
<tr>
<td>F13.99</td>
<td></td>
</tr>
<tr>
<td>F14.10-</td>
<td>Other stimulant related disorders</td>
</tr>
<tr>
<td>F14.99</td>
<td></td>
</tr>
<tr>
<td>F15.10-</td>
<td>Hallucinogen related disorders</td>
</tr>
<tr>
<td>F15.99</td>
<td></td>
</tr>
<tr>
<td>F16.10-</td>
<td>Inhalant related disorders</td>
</tr>
<tr>
<td>F16.99</td>
<td></td>
</tr>
<tr>
<td>F20.0-F20.9</td>
<td>Schizophrenia</td>
</tr>
<tr>
<td>F21</td>
<td>Schizotypal disorder</td>
</tr>
<tr>
<td>F22</td>
<td>Delusional disorders</td>
</tr>
<tr>
<td>F23</td>
<td>Brief psychotic disorder</td>
</tr>
<tr>
<td>F24</td>
<td>Shared psychotic disorder</td>
</tr>
<tr>
<td>F25.0-F25.9</td>
<td>Schizoaffective disorders</td>
</tr>
<tr>
<td>F28</td>
<td>Other psychotic disorder not due to a substance or known physiological condition</td>
</tr>
<tr>
<td>F29</td>
<td>Unspecified psychosis not due to a substance or known physiological condition</td>
</tr>
<tr>
<td>F30.10-</td>
<td>Manic episode</td>
</tr>
<tr>
<td>F30.9</td>
<td></td>
</tr>
<tr>
<td>F31.0-F31.9</td>
<td>Bipolar disorder</td>
</tr>
<tr>
<td>F32.0-F32.9</td>
<td>Major depressive disorder, single episode</td>
</tr>
<tr>
<td>F33.0-F33.9</td>
<td>Major depressive disorder, recurrent</td>
</tr>
<tr>
<td>F34.0-F34.9</td>
<td>Persistent mood [affective] disorders</td>
</tr>
<tr>
<td>F39</td>
<td>Unspecified mood [affective] disorder</td>
</tr>
<tr>
<td>F40.00-</td>
<td>Phobic anxiety disorders</td>
</tr>
<tr>
<td>F40.9</td>
<td></td>
</tr>
<tr>
<td>F41.0-F41.9</td>
<td>Other anxiety disorders</td>
</tr>
<tr>
<td>F42.2-F42.9</td>
<td>Obsessive-compulsive disorder</td>
</tr>
<tr>
<td>F43.0-F43.9</td>
<td>Reaction to severe stress, and adjustment disorders</td>
</tr>
<tr>
<td>F44.0</td>
<td>Dissociative amnesia</td>
</tr>
<tr>
<td>F44.1</td>
<td>Dissociative fugue</td>
</tr>
<tr>
<td>F44.2</td>
<td>Dissociative stupor</td>
</tr>
<tr>
<td>F44.4</td>
<td>Conversion disorder with motor symptom or deficit</td>
</tr>
<tr>
<td>F44.5</td>
<td>Conversion disorder with seizures or convulsions</td>
</tr>
<tr>
<td>F44.6</td>
<td>Conversion disorder with sensory symptom or deficit</td>
</tr>
<tr>
<td>F44.7</td>
<td>Conversion disorder with mixed symptom presentation</td>
</tr>
<tr>
<td>F45.41</td>
<td>Pain disorder exclusively related to psychological factors</td>
</tr>
<tr>
<td>F45.42</td>
<td>Pain disorder with related psychological factors</td>
</tr>
<tr>
<td>F53</td>
<td>Puerperal psychosis</td>
</tr>
<tr>
<td>F54</td>
<td>Psychological and behavioral factors associated with disorders or diseases classified elsewhere</td>
</tr>
<tr>
<td>F64.0-F64.9</td>
<td>Gender identity disorders</td>
</tr>
<tr>
<td>F68.10-</td>
<td>Factitious disorder</td>
</tr>
<tr>
<td>F68.13</td>
<td></td>
</tr>
<tr>
<td>F70-F79</td>
<td>Intellectual disabilities</td>
</tr>
<tr>
<td>F80.0-F80.9</td>
<td>Specific developmental disorders of speech and language</td>
</tr>
<tr>
<td>F81.0-F81.9</td>
<td>Specific developmental disorders of scholastic skills</td>
</tr>
<tr>
<td>F82</td>
<td>Specific developmental disorder of motor function</td>
</tr>
<tr>
<td>F84.0-F84.9</td>
<td>Pervasive developmental disorders</td>
</tr>
<tr>
<td>F88</td>
<td>Other disorders of psychological development</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>F89</td>
<td>Unspecified disorder of psychological development</td>
</tr>
<tr>
<td>F90.0-F90.9</td>
<td>Attention-deficit hyperactivity disorders</td>
</tr>
<tr>
<td>F91.0-F91.9</td>
<td>Conduct disorders</td>
</tr>
<tr>
<td>F93.0-F93.9</td>
<td>Emotional disorders with onset specific to childhood</td>
</tr>
<tr>
<td>F94.0-F94.9</td>
<td>Disorders of social functioning with onset specific to childhood and adolescence</td>
</tr>
<tr>
<td>F95.0-F95.9</td>
<td>Tic disorder</td>
</tr>
<tr>
<td>F98.8</td>
<td>Other specified behavioral and emotional disorders with onset usually occurring in childhood and adolescence</td>
</tr>
<tr>
<td>F98.9</td>
<td>Unspecified behavioral and emotional disorders with onset usually occurring in childhood and adolescence</td>
</tr>
<tr>
<td>G00.0-G09</td>
<td>Bacterial meningitis, not elsewhere classified</td>
</tr>
<tr>
<td>G10</td>
<td>Huntington's disease</td>
</tr>
<tr>
<td>G13.8</td>
<td>Systemic atrophy primarily affecting central nervous system in other diseases classified elsewhere</td>
</tr>
<tr>
<td>G14</td>
<td>Postpolio syndrome</td>
</tr>
<tr>
<td>G20</td>
<td>Parkinson's disease</td>
</tr>
<tr>
<td>G21.11</td>
<td>Neuroleptic induced parkinsonism</td>
</tr>
<tr>
<td>G21.19</td>
<td>Other drug induced secondary parkinsonism</td>
</tr>
<tr>
<td>G21.2</td>
<td>Secondary parkinsonism due to other external agents</td>
</tr>
<tr>
<td>G21.3</td>
<td>Postencephalitic parkinsonism</td>
</tr>
<tr>
<td>G21.4</td>
<td>Vascular parkinsonism</td>
</tr>
<tr>
<td>G21.8</td>
<td>Other secondary parkinsonism</td>
</tr>
<tr>
<td>G21.9</td>
<td>Secondary parkinsonism, unspecified</td>
</tr>
<tr>
<td>G23.0</td>
<td>Hallervorden-Spatz disease</td>
</tr>
<tr>
<td>G23.1</td>
<td>Progressive supranuclear ophthalmoplegia [Steele-Richardson-Olszewski]</td>
</tr>
<tr>
<td>G23.2</td>
<td>Striatonigral degeneration</td>
</tr>
<tr>
<td>G23.8</td>
<td>Other specified degenerative diseases of basal ganglia</td>
</tr>
<tr>
<td>G23.9</td>
<td>Degenerative disease of basal ganglia, unspecified</td>
</tr>
<tr>
<td>G25.5</td>
<td>Other chorea</td>
</tr>
<tr>
<td>G30.0-G30.9</td>
<td>Alzheimer's disease</td>
</tr>
<tr>
<td>G31.01</td>
<td>Pick's disease</td>
</tr>
<tr>
<td>G31.09</td>
<td>Other frontotemporal dementia</td>
</tr>
<tr>
<td>G31.1</td>
<td>Senile degeneration of brain, not elsewhere classified</td>
</tr>
<tr>
<td>G31.2</td>
<td>Degeneration of nervous system due to alcohol</td>
</tr>
<tr>
<td>G31.83</td>
<td>Dementia with Lewy bodies</td>
</tr>
<tr>
<td>G31.84</td>
<td>Mild cognitive impairment, so stated</td>
</tr>
<tr>
<td>G31.85</td>
<td>Corticobasal degeneration</td>
</tr>
<tr>
<td>G31.89</td>
<td>Other specified degenerative diseases of nervous system</td>
</tr>
<tr>
<td>G31.9</td>
<td>Degenerative disease of nervous system, unspecified</td>
</tr>
<tr>
<td>G35</td>
<td>Multiple sclerosis</td>
</tr>
<tr>
<td>G36.1</td>
<td>Acute and subacute hemorrhagic leukoencephalitis [Hurst]</td>
</tr>
<tr>
<td>G36.8</td>
<td>Other specified acute disseminated demyelination</td>
</tr>
<tr>
<td>G36.9</td>
<td>Acute disseminated demyelination, unspecified</td>
</tr>
<tr>
<td>G37.0</td>
<td>Diffuse sclerosis of central nervous system</td>
</tr>
<tr>
<td>G37.1</td>
<td>Central demyelination of corpus callosum</td>
</tr>
<tr>
<td>G37.2</td>
<td>Central pontine myelinolysis</td>
</tr>
<tr>
<td>G37.4</td>
<td>Subacute necrotizing myelitis of central nervous system</td>
</tr>
<tr>
<td>G37.8</td>
<td>Other specified demyelinating diseases of central nervous system</td>
</tr>
<tr>
<td>G37.9</td>
<td>Demyelinating disease of central nervous system, unspecified</td>
</tr>
<tr>
<td>G40.001-G40.019</td>
<td>Localization-related (focal) (partial) idiopathic epilepsy and epileptic syndromes with seizures of localized onset</td>
</tr>
<tr>
<td>G40.101-G40.119</td>
<td>Localization-related (focal) (partial) symptomatic epilepsy and epileptic syndromes with simple partial seizures</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>G40.201-G40.219</td>
<td>Localization-related (focal) (partial) symptomatic epilepsy and epileptic syndromes with complex partial seizures</td>
</tr>
<tr>
<td>G40.301-G40.319</td>
<td>Generalized idiopathic epilepsy and epileptic syndromes</td>
</tr>
<tr>
<td>G40.A01-G40.A19</td>
<td>Absence epileptic syndrome</td>
</tr>
<tr>
<td>G40.B01-G40.B19</td>
<td>Juvenile myoclonic epilepsy [impulsive petit mal]</td>
</tr>
<tr>
<td>G40.401-G40.419</td>
<td>Other generalized epilepsy and epileptic syndromes</td>
</tr>
<tr>
<td>G40.501-G40.509</td>
<td>Epileptic seizures related to external causes</td>
</tr>
<tr>
<td>G40.801-G40.804</td>
<td>Other epilepsy</td>
</tr>
<tr>
<td>G40.811-G40.814</td>
<td>Lennox-Gastaut syndrome</td>
</tr>
<tr>
<td>G40.821-G40.824</td>
<td>Epileptic spasms</td>
</tr>
<tr>
<td>G40.89</td>
<td>Other seizures</td>
</tr>
<tr>
<td>G40.901-G40.919</td>
<td>Epilepsy, unspecified</td>
</tr>
<tr>
<td>G91.0</td>
<td>Communicating hydrocephalus</td>
</tr>
<tr>
<td>G91.1</td>
<td>Obstructive hydrocephalus</td>
</tr>
<tr>
<td>G91.3</td>
<td>Post-traumatic hydrocephalus, unspecified</td>
</tr>
<tr>
<td>G91.4</td>
<td>Hydrocephalus in diseases classified elsewhere</td>
</tr>
<tr>
<td>G91.8</td>
<td>Other hydrocephalus</td>
</tr>
<tr>
<td>G91.9</td>
<td>Hydrocephalus, unspecified</td>
</tr>
<tr>
<td>G92</td>
<td>Toxic encephalopathy</td>
</tr>
<tr>
<td>G93.1</td>
<td>Anoxic brain damage, not elsewhere classified</td>
</tr>
<tr>
<td>G93.40</td>
<td>Encephalopathy, unspecified</td>
</tr>
<tr>
<td>G93.49</td>
<td>Other encephalopathy</td>
</tr>
<tr>
<td>G93.7</td>
<td>Reye’s syndrome</td>
</tr>
<tr>
<td>G94</td>
<td>Other disorders of brain in diseases classified elsewhere</td>
</tr>
<tr>
<td>G96.9</td>
<td>Disorder of central nervous system, unspecified</td>
</tr>
<tr>
<td>G97.2</td>
<td>Intracranial hypotension following ventricular shunting</td>
</tr>
<tr>
<td>G97.31-G97.32</td>
<td>Intraoperative hemorrhage and hematoma of a nervous system organ or structure complicating a procedure</td>
</tr>
<tr>
<td>G97.81</td>
<td>Other intraoperative complications of nervous system</td>
</tr>
<tr>
<td>G97.82</td>
<td>Other postprocedural complications and disorders of nervous system</td>
</tr>
<tr>
<td>I60.00-I60.9</td>
<td>Nontraumatic subarachnoid hemorrhage</td>
</tr>
<tr>
<td>I61.0-I61.9</td>
<td>Nontraumatic intracerebral hemorrhage</td>
</tr>
<tr>
<td>I62.00-I62.9</td>
<td>Nontraumatic intracranial hemorrhage</td>
</tr>
<tr>
<td>I63.00-I63.9</td>
<td>Cerebral infarction</td>
</tr>
<tr>
<td>I67.3</td>
<td>Progressive vascular leukoencephalopathy</td>
</tr>
<tr>
<td>I69.01</td>
<td>Cognitive deficits following nontraumatic subarachnoid hemorrhage (Invalid code effective 10.01.2016)</td>
</tr>
<tr>
<td>I69.010-I69.019</td>
<td>Cognitive deficits following nontraumatic subarachnoid hemorrhage</td>
</tr>
<tr>
<td>I69.11</td>
<td>Cognitive deficits following nontraumatic intracerebral hemorrhage (Invalid code effective 10.01.2016)</td>
</tr>
<tr>
<td>I69.110-I69.119</td>
<td>Cognitive deficits following nontraumatic intracerebral hemorrhage</td>
</tr>
<tr>
<td>I69.21</td>
<td>Cognitive deficits following other nontraumatic intracranial hemorrhage (Invalid code effective 10.01.2016)</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>I69.210-I69.219</td>
<td>Cognitive deficits following other nontraumatic intracranial hemorrhage</td>
</tr>
<tr>
<td>I69.31</td>
<td>Cognitive deficits following cerebral infarction (Invalid code effective 10.01.2016)</td>
</tr>
<tr>
<td>I69.310-I69.319</td>
<td>Cognitive deficits following cerebral infarction</td>
</tr>
<tr>
<td>I69.81</td>
<td>Cognitive deficits following other cerebrovascular disease (Invalid code effective 10.01.2016)</td>
</tr>
<tr>
<td>I69.810-I69.819</td>
<td>Cognitive deficits following other cerebrovascular disease</td>
</tr>
<tr>
<td>I69.91</td>
<td>Cognitive deficits following unspecified cerebrovascular disease (Invalid code effective 10.01.2016)</td>
</tr>
<tr>
<td>I69.910-I69.919</td>
<td>Cognitive deficits following unspecified cerebrovascular disease</td>
</tr>
<tr>
<td>I97.810-I97.811</td>
<td>Intraoperative cerebrovascular infarction during surgery</td>
</tr>
<tr>
<td>I97.820-I97.821</td>
<td>Postprocedural cerebrovascular infarction during surgery</td>
</tr>
<tr>
<td>Q04.9</td>
<td>Congenital malformation of brain, unspecified</td>
</tr>
<tr>
<td>Q06.9</td>
<td>Congenital malformation of spinal cord, unspecified</td>
</tr>
<tr>
<td>Q07.9</td>
<td>Congenital malformation of nervous system, unspecified</td>
</tr>
<tr>
<td>Q28.2</td>
<td>Arteriovenous malformation of cerebral vessels</td>
</tr>
<tr>
<td>Q28.3</td>
<td>Other malformations of cerebral vessels</td>
</tr>
<tr>
<td>R09.01</td>
<td>Asphyxia</td>
</tr>
<tr>
<td>R09.02</td>
<td>Hypoxemia</td>
</tr>
<tr>
<td>R41.1</td>
<td>Anterograde amnesia</td>
</tr>
<tr>
<td>R41.2</td>
<td>Retrograde amnesia</td>
</tr>
<tr>
<td>R41.3</td>
<td>Other amnesia</td>
</tr>
<tr>
<td>R56.1</td>
<td>Post traumatic seizures</td>
</tr>
<tr>
<td>R56.9</td>
<td>Unspecified convulsions</td>
</tr>
<tr>
<td>S06.0X0A</td>
<td>Concussion without loss of consciousness, initial encounter</td>
</tr>
<tr>
<td>S06.0X0D</td>
<td>Concussion without loss of consciousness, subsequent encounter</td>
</tr>
<tr>
<td>S06.0X0S</td>
<td>Concussion without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.0X1A</td>
<td>Concussion with loss of consciousness of 30 minutes or less, initial encounter</td>
</tr>
<tr>
<td>S06.0X1D</td>
<td>Concussion with loss of consciousness of 30 minutes or less, subsequent encounter</td>
</tr>
<tr>
<td>S06.0X1S</td>
<td>Concussion with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.0X9A</td>
<td>Concussion with loss of consciousness of unspecified duration, initial encounter</td>
</tr>
<tr>
<td>S06.0X9D</td>
<td>Concussion with loss of consciousness of unspecified duration, subsequent encounter</td>
</tr>
<tr>
<td>S06.0X9S</td>
<td>Concussion with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>S06.1X0S</td>
<td>Traumatic cerebral edema without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.1X1S</td>
<td>Traumatic cerebral edema with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.1X2S</td>
<td>Traumatic cerebral edema with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.1X3S</td>
<td>Traumatic cerebral edema with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.1X4S</td>
<td>Traumatic cerebral edema with loss of consciousness of 6 hours to 24 hours, sequela</td>
</tr>
<tr>
<td>S06.1X5S</td>
<td>Traumatic cerebral edema with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.1X6S</td>
<td>Traumatic cerebral edema with loss of consciousness greater than 24 hours without return to pre-existing conscious level with patient surviving, sequela</td>
</tr>
<tr>
<td>S06.1X9S</td>
<td>Traumatic cerebral edema with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>S06.2X0S</td>
<td>Diffuse traumatic brain injury without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.2X1S</td>
<td>Diffuse traumatic brain injury with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.2X2S</td>
<td>Diffuse traumatic brain injury with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.2X3S</td>
<td>Diffuse traumatic brain injury with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.2X4S</td>
<td>Diffuse traumatic brain injury with loss of consciousness of 6 hours to 24 hours, sequela</td>
</tr>
<tr>
<td>S06.2X5S</td>
<td>Diffuse traumatic brain injury with loss of consciousness greater than 24 hours with return to pre-existing conscious levels, sequela</td>
</tr>
<tr>
<td>S06.2X6S</td>
<td>Diffuse traumatic brain injury with loss of consciousness greater than 24 hours without return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.2X9S</td>
<td>Diffuse traumatic brain injury with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>S06.300S</td>
<td>Unspecified focal traumatic brain injury without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.301S</td>
<td>Unspecified focal traumatic brain injury with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.302S</td>
<td>Unspecified focal traumatic brain injury with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.303S</td>
<td>Unspecified focal traumatic brain injury with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.304S</td>
<td>Unspecified focal traumatic brain injury with loss of consciousness of 6 hours to 24 hours, sequela</td>
</tr>
<tr>
<td>S06.305S</td>
<td>Unspecified focal traumatic brain injury with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.306S</td>
<td>Unspecified focal traumatic brain injury with loss of consciousness greater than 24 hours without return to pre-existing conscious level with patient surviving, sequela</td>
</tr>
<tr>
<td>S06.309S</td>
<td>Unspecified focal traumatic brain injury with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>S06.310S</td>
<td>Contusion and laceration of right cerebrum without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.311S</td>
<td>Contusion and laceration of right cerebrum with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.312S</td>
<td>Contusion and laceration of right cerebrum with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.313S</td>
<td>Contusion and laceration of right cerebrum with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.314S</td>
<td>Contusion and laceration of right cerebrum with loss of consciousness of 6 hours to 24 hours sequela</td>
</tr>
<tr>
<td>S06.315S</td>
<td>Contusion and laceration of right cerebrum with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.316S</td>
<td>Contusion and laceration of right cerebrum with loss of consciousness greater than 24 hours without return to pre-existing conscious level with patient surviving, sequela</td>
</tr>
<tr>
<td>S06.319S</td>
<td>Contusion and laceration of right cerebrum with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>S06.320S</td>
<td>Contusion and laceration of left cerebrum without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.321S</td>
<td>Contusion and laceration of left cerebrum with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.322S</td>
<td>Contusion and laceration of left cerebrum with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.323S</td>
<td>Contusion and laceration of left cerebrum with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.324S</td>
<td>Contusion and laceration of left cerebrum with loss of consciousness of 6 hours to 24 hours sequela</td>
</tr>
<tr>
<td>S06.325S</td>
<td>Contusion and laceration of left cerebrum with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.326S</td>
<td>Contusion and laceration of left cerebrum with loss of consciousness greater than 24 hours without return to pre-existing conscious level with patient surviving, sequela</td>
</tr>
<tr>
<td>S06.329S</td>
<td>Contusion and laceration of left cerebrum with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>S06.330S</td>
<td>Contusion and laceration of cerebrum, unspecified, without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.331S</td>
<td>Contusion and laceration of cerebrum unspecified with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.332S</td>
<td>Contusion and laceration of cerebrum unspecified with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.333S</td>
<td>Contusion and laceration of cerebrum unspecified with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.334S</td>
<td>Contusion and laceration of cerebrum unspecified with loss of consciousness of 6 hours to 24 hours sequela</td>
</tr>
<tr>
<td>S06.335S</td>
<td>Contusion and laceration of cerebrum unspecified with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.336S</td>
<td>Contusion and laceration of cerebrum, unspecified, with loss of consciousness greater than 24 hours without return to pre-existing consciousness level with patient surviving, sequela</td>
</tr>
<tr>
<td>S06.339S</td>
<td>Contusion and laceration of cerebrum, unspecified, with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>S06.340S</td>
<td>Traumatic hemorrhage of right cerebrum without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.341S</td>
<td>Traumatic hemorrhage of right cerebrum with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.342S</td>
<td>Traumatic hemorrhage of right cerebrum with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.343S</td>
<td>Traumatic hemorrhage of right cerebrum with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.344S</td>
<td>Traumatic hemorrhage of right cerebrum with loss of consciousness of 6 hours to 24 hours sequela</td>
</tr>
<tr>
<td>S06.345S</td>
<td>Traumatic hemorrhage of right cerebrum with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.346S</td>
<td>Traumatic hemorrhage of right cerebrum with loss of consciousness greater than 24 hours without return to pre-existing conscious level with patient surviving, sequela</td>
</tr>
<tr>
<td>S06.349S</td>
<td>Traumatic hemorrhage of right cerebrum with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>S06.350S</td>
<td>Traumatic hemorrhage of left cerebrum without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.351S</td>
<td>Traumatic hemorrhage of left cerebrum with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.352S</td>
<td>Traumatic hemorrhage of left cerebrum with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.353S</td>
<td>Traumatic hemorrhage of left cerebrum with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.354S</td>
<td>Traumatic hemorrhage of left cerebrum with loss of consciousness of 6 hours to 24 hours sequela</td>
</tr>
<tr>
<td>S06.355S</td>
<td>Traumatic hemorrhage of left cerebrum with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.356S</td>
<td>Traumatic hemorrhage of left cerebrum with loss of consciousness greater than 24 hours without return to pre-existing conscious level with patient surviving, sequela</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>S06.359S</td>
<td>Traumatic hemorrhage of left cerebrum with loss of consciousness of duration, sequela</td>
</tr>
<tr>
<td>S06.360S</td>
<td>Traumatic hemorrhage of cerebrum, unspecified, without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.361S</td>
<td>Traumatic hemorrhage of cerebrum, unspecified with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.362S</td>
<td>Traumatic hemorrhage of cerebrum, unspecified with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.363S</td>
<td>Traumatic hemorrhage of cerebrum, unspecified with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.364S</td>
<td>Traumatic hemorrhage of cerebrum, unspecified with loss of consciousness of 6 hours to 24 hours sequela</td>
</tr>
<tr>
<td>S06.365S</td>
<td>Traumatic hemorrhage of cerebrum, unspecified with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.366S</td>
<td>Traumatic hemorrhage of cerebrum, unspecified with loss of consciousness greater than 24 hours without return to pre-existing conscious level with patient surviving, sequela</td>
</tr>
<tr>
<td>S06.369S</td>
<td>Traumatic hemorrhage of cerebrum, unspecified with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>S06.370S</td>
<td>Contusion, laceration, and hemorrhage of cerebellum without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.371S</td>
<td>Contusion, laceration and hemorrhage of cerebellum with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.372S</td>
<td>Contusion, laceration and hemorrhage of cerebellum with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.373S</td>
<td>Contusion, laceration and hemorrhage of cerebellum with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.374S</td>
<td>Contusion, laceration and hemorrhage of cerebellum with loss of consciousness of 6 hours to 24 hours sequela</td>
</tr>
<tr>
<td>S06.375S</td>
<td>Contusion, laceration and hemorrhage of cerebellum with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.376S</td>
<td>Contusion, laceration and hemorrhage of cerebellum with loss of consciousness greater than 24 hours without return to pre-existing conscious level with patient surviving, sequela</td>
</tr>
<tr>
<td>S06.379S</td>
<td>Contusion, laceration and hemorrhage of cerebellum with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>S06.380S</td>
<td>Contusion, laceration, and hemorrhage of brainstem without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.381S</td>
<td>Contusion, laceration and hemorrhage of brainstem with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.382S</td>
<td>Contusion, laceration and hemorrhage of brainstem with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.383S</td>
<td>Contusion, laceration and hemorrhage of brainstem with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.384S</td>
<td>Contusion, laceration and hemorrhage of brainstem with loss of consciousness of 6 hours to 24 hours sequela</td>
</tr>
<tr>
<td>S06.385S</td>
<td>Contusion, laceration and hemorrhage of brainstem with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.386S</td>
<td>Contusion, laceration and hemorrhage of brainstem with loss of consciousness greater than 24 hours without return to pre-existing conscious level with patient surviving, sequela</td>
</tr>
<tr>
<td>S06.389S</td>
<td>Contusion, laceration and hemorrhage of brainstem with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>S06.4X0S</td>
<td>Epidural hemorrhage without loss of consciousness, sequela</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>S06.4X1S</td>
<td>Epidural hemorrhage with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.4X2S</td>
<td>Epidural hemorrhage with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.4X3S</td>
<td>Epidural hemorrhage with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.4X4S</td>
<td>Epidural hemorrhage with loss of consciousness of 6 hours to 24 hours sequela</td>
</tr>
<tr>
<td>S06.4X5S</td>
<td>Epidural hemorrhage with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.4X6S</td>
<td>Epidural hemorrhage with loss of consciousness greater than 24 hours without return to pre-existing conscious level with patient surviving, sequela</td>
</tr>
<tr>
<td>S06.4X9S</td>
<td>Epidural hemorrhage with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>S06.5X0S</td>
<td>Traumatic subdural hemorrhage without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.5X1S</td>
<td>Traumatic subdural hemorrhage with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.5X2S</td>
<td>Traumatic subdural hemorrhage with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.5X3S</td>
<td>Traumatic subdural hemorrhage with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.5X4S</td>
<td>Traumatic subdural hemorrhage with loss of consciousness of 6 hours to 24 hours sequela</td>
</tr>
<tr>
<td>S06.5X5S</td>
<td>Traumatic subdural hemorrhage with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.5X6S</td>
<td>Traumatic subdural hemorrhage with loss of consciousness greater than 24 hours without return to pre-existing conscious level with patient surviving, sequela</td>
</tr>
<tr>
<td>S06.5X9S</td>
<td>Traumatic subdural hemorrhage with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>S06.6X0S</td>
<td>Traumatic subarachnoid hemorrhage without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.6X1S</td>
<td>Traumatic subarachnoid hemorrhage with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.6X2S</td>
<td>Traumatic subarachnoid hemorrhage with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.6X3S</td>
<td>Traumatic subarachnoid hemorrhage with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.6X4S</td>
<td>Traumatic subarachnoid hemorrhage with loss of consciousness of 6 hours to 24 hours sequela</td>
</tr>
<tr>
<td>S06.6X5S</td>
<td>Traumatic subarachnoid hemorrhage with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.6X6S</td>
<td>Traumatic subarachnoid hemorrhage with loss of consciousness greater than 24 hours without return to pre-existing conscious level with patient surviving, sequela</td>
</tr>
<tr>
<td>S06.6X9S</td>
<td>Traumatic subarachnoid hemorrhage with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>S06.810S</td>
<td>Injury of right internal carotid artery, intracranial portion, not elsewhere classified without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.811S</td>
<td>Injury of right internal carotid artery, intracranial portion, not elsewhere classified with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.812S</td>
<td>Injury of right internal carotid artery, intracranial portion, not elsewhere classified with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.813S</td>
<td>Injury of right internal carotid artery, intracranial portion, not elsewhere classified with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.814S</td>
<td>Injury of right internal carotid artery, intracranial portion, not elsewhere classified with loss of consciousness of 6 hours to 24 hours, sequela</td>
</tr>
<tr>
<td>S06.815S</td>
<td>Injury of right internal carotid artery, intracranial portion, not elsewhere classified with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.816S</td>
<td>Injury of right internal carotid artery, intracranial portion, not elsewhere classified</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>S06.819S</td>
<td>Injury of right internal carotid artery, intracranial portion, not elsewhere classified with loss of consciousness greater than 24 hours without return to pre-existing conscious level with patient surviving, sequela</td>
</tr>
<tr>
<td>S06.820S</td>
<td>Injury of left internal carotid artery, intracranial portion, not elsewhere classified with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>S06.821S</td>
<td>Injury of left internal carotid artery, intracranial portion, not elsewhere classified without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.822S</td>
<td>Injury of left internal carotid artery, intracranial portion, not elsewhere classified with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.823S</td>
<td>Injury of left internal carotid artery, intracranial portion, not elsewhere classified with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.824S</td>
<td>Injury of left internal carotid artery, intracranial portion, not elsewhere classified with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.825S</td>
<td>Injury of left internal carotid artery, intracranial portion, not elsewhere classified with loss of consciousness of 6 hours to 24 hours, sequela</td>
</tr>
<tr>
<td>S06.826S</td>
<td>Injury of left internal carotid artery, intracranial portion, not elsewhere classified with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.829S</td>
<td>Injury of left internal carotid artery, intracranial portion, not elsewhere classified with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.890S</td>
<td>Other specified intracranial injury without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.891S</td>
<td>Other specified intracranial injury with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.892S</td>
<td>Other specified intracranial injury with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.893S</td>
<td>Other specified intracranial injury with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.894S</td>
<td>Other specified intracranial injury with loss of consciousness of 6 hours to 24 hours, sequela</td>
</tr>
<tr>
<td>S06.895S</td>
<td>Other specified intracranial injury with loss of consciousness greater than 24 hours with return to pre-existing conscious level, sequela</td>
</tr>
<tr>
<td>S06.896S</td>
<td>Other specified intracranial injury with loss of consciousness greater than 24 hours without return to pre-existing conscious level with patient surviving, sequela</td>
</tr>
<tr>
<td>S06.899S</td>
<td>Other specified intracranial injury with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>S06.9X0S</td>
<td>Unspecified intracranial injury without loss of consciousness, sequela</td>
</tr>
<tr>
<td>S06.9X1S</td>
<td>Unspecified intracranial injury with loss of consciousness of 30 minutes or less, sequela</td>
</tr>
<tr>
<td>S06.9X2S</td>
<td>Unspecified intracranial injury with loss of consciousness of 31 minutes to 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.9X3S</td>
<td>Unspecified intracranial injury with loss of consciousness of 1 hour to 5 hours 59 minutes, sequela</td>
</tr>
<tr>
<td>S06.9X4S</td>
<td>Unspecified intracranial injury with loss of consciousness of 6 hours to 24 hours sequela</td>
</tr>
<tr>
<td>S06.9X5S</td>
<td>Unspecified intracranial injury with loss of consciousness greater than 24 hours with return to pre-existing consciousness level, sequela</td>
</tr>
<tr>
<td>S06.9X6S</td>
<td>Unspecified intracranial injury with loss of consciousness greater than 24 hours without return to pre-existing consciousness level with patient surviving, sequela</td>
</tr>
<tr>
<td>S06.9X9s</td>
<td>Unspecified intracranial injury with loss of consciousness of unspecified duration, sequela</td>
</tr>
<tr>
<td>T66.XXXS</td>
<td>Radiation sickness, unspecified</td>
</tr>
</tbody>
</table>

Considered educational in nature/not medically necessary:
ICD-9-CM Diagnosis Codes	Description
All other codes	

ICD-10-CM Diagnosis Codes	Description
All other codes	

References

