VISION THERAPY/ORTHOPTICS

Table of Contents

Coverage Policy .. 1
Overview .. 1
General Background ... 1
Coding/Billing Information 5
References ... 5

Related Coverage Resources

Attention-Deficit/Hyperactivity Disorder (ADHD): Assessment and Treatment
Autism Spectrum Disorders/Pervasive Developmental Disorders: Assessment and Treatment
Visual Perceptual Training

INSTRUCTIONS FOR USE

The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide utilization review services to clients and do not make coverage determinations. References to standard benefit plan language and coverage determinations do not apply to those clients. Coverage Policies are intended to provide guidance in interpreting certain standard benefit plans administered by Cigna Companies. Please note, the terms of a customer’s particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer’s benefit plan document may contain a specific exclusion related to a topic addressed in a Coverage Policy. In the event of a conflict, a customer’s benefit plan document always supersedes the information in the Coverage Policies. In the absence of a controlling federal or state coverage mandate, benefits are ultimately determined by the terms of the applicable benefit plan document. Coverage determinations in each specific instance require consideration of 1) the terms of the applicable benefit plan document in effect on the date of service; 2) any applicable laws/regulations; 3) any relevant collateral source materials including Coverage Policies and; 4) the specific facts of the particular situation. Coverage Policies relate exclusively to the administration of health benefit plans. Coverage Policies are not recommendations for treatment and should never be used as treatment guidelines. In certain markets, delegated vendor guidelines may be used to support medical necessity and other coverage determinations.

Coverage Policy

Coverage for Vision Therapy/Orthoptics varies across plans. Refer to the customer’s benefit plan document for coverage details.

Vision therapy/orthoptics is considered experimental, investigational or unproven for any indication.

Overview

This Coverage Policy addresses in-office vision therapy/orthoptic and/or pleoptic training.

General Background

According to the American Association for Pediatric Ophthalmology and Strabismus, “vision therapy” is a term used by optometrists. Optometrists define vision therapy as an attempt to develop or improve visual skills and abilities; improve visual comfort, ease, and efficiency; and change visual processing or interpretation of visual information. An optometric vision therapy program consists of supervised in-office and at home reinforcement exercises performed over weeks to months. In addition to exercises, lenses (“training glasses”), prisms, filters, patches, electronic targets, or balance boards may be used. There are three main categories of vision therapy:

- Orthoptic vision therapy so called by optometrists are a series of exercises usually weekly over several months performed in the optometric office. Orthoptic eye exercises (orthoptics), as used by pediatric
ophthalmologists and orthoptists, are eye exercises to improve binocular function and are taught in the office and carried out at home.

- Behavioral/perceptual vision therapy – eye exercises to improve visual processing and visual perception
- Vision therapy for prevention or correction of myopia (nearsightedness) (American Association for Pediatric Ophthalmology and Strabismus, 2016).

Convergence insufficiency occurs when eyes do not turn inward properly while focusing on a nearby object. When looking at a close object, eyes should converge — turn inward together to focus — so that they provide binocular vision and a single image. But with convergence insufficiency, an individual is unable to move their eyes inward to focus normally. It is usually diagnosed in school-age children and adolescents.

Amblyopia is reduced vision in one eye caused by abnormal visual development early in life. The weaker — or lazy — eye often wanders inward or outward. Amblyopia generally develops from birth up to age 7 years. It is the leading cause of decreased vision in one eye among children. Pleoptic training treats amblyopia using guided exercises.

Literature Review – Overview
Convergence insufficiency (CI) is the most common disorder evaluated in vision therapy/orthoptics studies. There are few modern, randomized controlled trials evaluating office-based vision therapy/orthoptics in CI patients. Most published studies are all reporting from the same trial/study population, and are versions of the Convergence Insufficiency Treatment Trial (CITT). After reviewing the recent published, peer-reviewed literature for CI as well as professional society opinion, the following conclusions can be drawn:

1. There is not a standard definition of what an ‘in-office vision therapy/orthoptic visit’ consist of.
2. Recent evidence for CI is scare and does not consist of large, well-designed studies. Current evidence does not demonstrate that in-office vision therapy/orthoptics is superior to other treatments (e.g., at home/computer exercises, corrective lenses). There is insufficient evidence evaluating diagnoses other than CI.

Literature Review – Detail
Current peer-reviewed scientific literature primarily addresses the diagnosis of convergence insufficiency (CI) and lacks consensus when defining standard in-office vision therapy/orthoptics as well as does not demonstrate that in-office vision therapy/orthoptics is superior to other treatments (e.g., at home/computer exercises, corrective lenses). There is insufficient evidence evaluating diagnoses other than CI.

The Convergence Insufficiency Treatment Trial (CITT) Study Group (Scheiman, et al., 2010; CITTSG, et al., 2009; CITTSG, et al., 2008) conducted a randomized clinical trial including 221 children age nine to 17 with symptomatic convergence insufficiency (CI). Participants were randomly assigned one of the following treatments:

- home-based pencil push-ups (HBPP); 15 minutes / 5 days per week
- home-based computer vergence/ accommodative therapy and pencil push-ups (HBCVAT+); 15 minutes of therapy per day on computer software and 5 minutes per day of pencil push-ups for 5 days per week
- office-based vergence/ accommodative therapy with home reinforcement (OBVAT); weekly 60-minute in-office therapy visit with additional home therapy procedures prescribed for 15 minutes a day, 5 days per week.
- office-based placebo therapy with home reinforcement (OBPT); also received therapy during a weekly 60-minute office visit and were prescribed procedures to be performed at home for 15 minutes per day, 5 days per week; however, their therapy procedures were designed to resemble real vergence/ accommodative therapy procedures yet not stimulate vergence, accommodation, or fine saccadic eye movement skills beyond normal daily visual activities.

The primary outcome measure was the change in the Convergence Insufficiency Symptom Survey (CISS) score from baseline to treatment completion after 12 weeks of therapy; the secondary outcome measures were the change in Near Point of Convergence (NPC) and in Positive Fusional Vergence (PFV) from baseline to treatment completion.
CITT results at 12 weeks: Using a composite measure of CISS, NPC, and PFV, the percentage of patients classified as successful or improved was significantly greater in the OBVAT group (73%) than in the other three groups (43% in HBPP, 33% in HBCVAT+, and 35% in OBPT; p≤0.002). No other differences were observed at week 12 (p≥0.50). The authors noted that although the length of therapy required to achieve optimum results is not known; OBVAT resulted in a more rapid improvement in symptoms and clinical measures, as well as a greater percentage of patients classified as successful or improved when compared with HBPP, HBCVAT+, or OBPT.

CITT results at one year: Note, this portion of the trial is not randomized. Of the 221 patient population described above, 70 patients were evaluated at one year (completion rate was 89%, 70 of 79): OBVAT = 33; HBPP = 18; HBCVAT+ = 12; and OBPT = 16. At completion of the 12 week treatment program, patients were classified as either asymptomatic (CISS score < 16) or symptomatic (CISS score ≥ 16). Symptomatic patients were offered alternative treatment at no cost. Asymptomatic patients were assigned home maintenance therapy (described below) for 15 minutes per week for the initial 6 months following treatment discontinuation. No home therapy was prescribed between the 6- and 12-month follow-up visits. The primary outcome measure was the mean change in the CISS score from the 12-week outcome visit to the 6- and 12-month follow-up examinations. Patients in each group were instructed to perform 15 minutes of maintenance therapy once per week for the first 6 months following completion of treatment. The OBVAT group performed one convergence technique (Brock String or Barrel Card) and one fusional vergence technique (Eccentric Circles or Lifesaver Cards). Patients in the HBPP were asked to do pencil push-ups for 15 minutes while those in the HBCVAT+ group did 5 minutes of pencil push-ups and 10 minutes of computer vergence therapy. The patients in the OBPT group were instructed to use the TV Trainer (watch television covered by a neutral density filter while wearing Polaroid glasses) for 10 minutes and work with playing cards (plays cards while wearing Polaroid glasses) for 5 minutes.

CITT Summary: There were no significant changes in the CISS in any treatment group during the 1-year follow-up. The percentage who remained asymptomatic in each group was 84.4% for OBVAT, 66.7% for HBPP, 80% for HBCVAT+, 76.9% for OBPT. The percentage who remained either asymptomatic/successful or improved 1-year post-treatment was 87.5% (28/32) for OBVAT, 66.6% (10/15) for HBPP, 80% (8/10) for HBCVAT+, 69.3% (9/13) for OBPT. In summary, the overall 1-year probability of symptoms or signs recurring varied from 33% in the HBPP group to 16% in the OBVAT group (Scheiman, et al., 2010; CITTSG, et al., 2009; CITTSG, et al., 2008).

In a 2013 evidence review pertaining to convergence insufficiency, Whitecross et al. (2013) concluded “There are limited randomized control trials evaluating the effectiveness of vision therapy, and those that do exist have limitations: small patient populations, differing outcome measures, treatment length and intensity, and placebo effects, which are all confounding factors when assessing the validity of the current studies. Despite the prevalence of convergence insufficiency, the known efficacy of vision therapy remains somewhat questionable. There is evidence to suggest that some form of therapy is effective in reducing symptoms and clinical findings of convergence insufficiency, but there is a lack of equal comparison in order to conclude which forms of treatment are best.”

In a controlled, prospective trial, Dusek et al. (2011) compared 134 children age 7-14 years with CI. Two different types of treatment for CI were employed: a computerized home visual therapy system (HTS) (N=51) or 8Δ base-in reading glasses (N=51). The computerized visual therapy system is used by the subject in his or her home environment and uses images that the subject has to fuse in order to perceive three dimensional (stereoscopic) images. These stereoscopic images are resolved using red/blue spectacles. A full visual assessment including reading speed and accuracy were conducted pre- and post-treatment. Thirty-two subjects (N=32) refused both types of treatment offered and agreed to return for a subsequent assessment four weeks later as a control group for the study. Factorial analyses demonstrated statistically significant changes between results obtained for visits 1 and 2 for total reading time, reading error score, amplitude of accommodation and binocular accommodative facility (within subjects effects) (p<0.05). Significant differences were also demonstrated between treatment groups for total reading time, reading error score and binocular accommodative facility (between subjects effects) (p<0.05). The authors concluded that prismatic correction offers an effective treatment option for children with CI and reading difficulties that arise from causes not linked to intellectual ability.
In a prospective, controlled, non-randomized trial, Shin et al. (2011) evaluated 56 children (aged 9–13 years diagnosed with symptomatic CI) at 12 weeks, and 20 of the 56 at one year. Of the 56, 27 had CI only and 29 had combined symptomatic CI and accommodative insufficiency (AI). They were independently divided into a treatment and a control group, matched by age and gender. More subjects were assigned to the treatment group after considering the possibility of subject loss during the course of treatment. The Treatment group visited the school clinic two times per week for 1 hour each treatment session and additionally was prescribed home support procedures to be performed for 15–25 minutes a day during the week. The treatment group received 12 weeks of vision therapy while the control group received no therapy. Of 20 children who completed one year: 17 remain the same; 1 child with CI showed clinical regression of the NPC; 2 children with combined CI and AI had deteriorated. Authors conclude that at one year follow-up examination, most children maintained the improved symptom and clinical measures after vision therapy.

In earlier trials, Scheiman et al. (2005a) conducted a randomized, controlled trial including 72 children aged 9 to <18 years with symptomatic CI assigned to either base-in prism glasses or placebo reading glasses. Patients were reevaluated at 6 weeks. The change in the CISS scores (p = 0.33), near point of convergence (p = 0.91), and positive fusional vergence (p = 0.59) were not significantly different between the two groups after 6 weeks of wearing glasses. Scheiman et al. (2005b) evaluated 46 adults age 19 to 30 years of age with symptomatic CI. Participants were randomly assigned to receive 12 weeks of office-based vision therapy/orthoptics, office-based placebo vision therapy/orthoptics, or home-based pencil pushups. The vision therapy/orthoptics group received therapy administered by a trained therapist during a weekly, 60-minute office visit, with additional procedures to be performed at home for 15 minutes a day, five times per week for 12 weeks. Like the vision therapy/orthoptics group, the placebo vision therapy/orthoptics group received therapy administered by a trained therapist during a 60-minute office visit and were prescribed procedures to be performed at home, 15 minutes, five times per week for 12 weeks. The procedures for placebo vision therapy/orthoptics were designed to simulate real vision therapy/orthoptics procedures without the expectation of affecting vergence, accommodation, or saccadic function. The primary outcome measure was the symptom score on the CISS. Secondary outcome measures were the near point of convergence and positive fusional vergence at near. Results demonstrated that office-based vision therapy/orthoptics improved the signs associated with CI. Both the average near point of convergence and the average positive fusional vergence at near improved to roughly normal clinical values, although 58% of the patients in this group were still considered to be symptomatic after 12 weeks of treatment.

In a retrospective report, Adler et al. (2002) studies the efficacy of weekly office-based optometric vision therapy supplemented by daily home practice sessions of between 15 and 20 minutes per day. A total of 92 participants aged 6 to 35 years with a diagnosis of CI in a UK general optometric practice were evaluated. The number of visits for treatment ranged from 2 to 20 office visits. There was no significant correlation between the number of visits and the NPC before or after treatment. The effect of treatment on the NPC was highly significant (p < 0.001). The authors concluded “the results clearly indicate that when CI is defined by NPC alone, vision therapy is an effective form of therapy.

Professional Societies/Organizations
The American Academy of Pediatrics and American Academy of Ophthalmology Joint Statement on Learning disabilities, dyslexia, and vision (reaffirmed 2014) states that symptomatic convergence insufficiency can be treated with near-point exercises, prism convergence exercises, or computer-based convergence exercises. Most of these exercises can be performed at home, and extensive in-office vision therapy is usually not required. Alternatively, for other patients, reading glasses with base-in prism or minus lenses can be used as treatment.

The American Academy of Ophthalmology Preferred Practice Pattern® for Amblyopia (2012) states other eye exercises or forms of vision therapy have been promoted for the treatment of amblyopia as an adjunct to patching. However, there are insufficient cohort studies or randomized clinical trials to make a recommendation to use these techniques.

The American Association for Pediatric Ophthalmology and Strabismus and the American Academy of Ophthalmology Joint Policy Statement ‘Amblyopia is a Medical Condition’ (updated 2017) states “Optical correction, such as eyeglasses or contact lenses, may be medically indicated as a part of amblyopia treatment in addition to other modalities, such as patching and/or pharmacologic treatment. Unless amblyopia is treated during childhood, recovery of vision is rarely achieved.”
Use Outside of the US
The Royal College of Ophthalmologists (RCO): The RCO Guidelines for the Management of Strabismus in Childhood (2012) lists:

- orthoptic treatment to expand base in fusion range under Treatments for Fully Accommodative Esotropia,
- orthoptic exercises under Treatments for Convergence Excess Esotropia,
- the value (if any) of orthoptic exercises/vision therapy under Controversies of Intermittent Distance Exotropia.

Coding/Billing Information

Note: 1) This list of codes may not be all-inclusive.
 2) Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement.

Considered Experimental/Investigational/Unproven when used to report vision therapy/orthoptics:

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>92065</td>
<td>Orthoptic and/or pleoptic training, with continuing medical direction and evaluation</td>
</tr>
<tr>
<td>97110</td>
<td>Therapeutic procedure, 1 or more areas, each 15 minutes; therapeutic exercises to develop strength and endurance, range of motion and flexibility</td>
</tr>
<tr>
<td>97112</td>
<td>Therapeutic procedure, 1 or more areas, each 15 minutes; neuromuscular reeducation of movement, balance, coordination, kinesthetic sense, posture, and/or proprioception for sitting and/or standing activities</td>
</tr>
<tr>
<td>97140</td>
<td>Manual therapy techniques (eg, mobilization/ manipulation, manual lymphatic drainage, manual traction), 1 or more regions, each 15 minutes</td>
</tr>
<tr>
<td>97530</td>
<td>Therapeutic activities, direct (one-on-one) patient contact (use of dynamic activities to improve functional performance), each 15 minutes</td>
</tr>
</tbody>
</table>

References

 http://www.aao.org/guidelines-browse?filter=preferredpracticepatternsguideline
 https://www.aao.org/guidelines-browse?filter=preferredpracticepatternsguideline

 http://www.aao.org/guidelines-browse?filter=preferredpracticepatternsguideline
 https://www.aao.org/guidelines-browse?filter=preferredpracticepatternsguideline

