Cigna Medical Coverage Policy

Subject: Kidney Transplantation, Pancreas-Kidney Transplantation, and Pancreas Transplantation Alone

Effective Date: 9/15/2016
Next Review Date: 9/15/2017
Coverage Policy Number: 0146

Table of Contents
Coverage Policy .. 1
General Background ... 2
Coding/Billing Information 9
References .. 11

Related Coverage Resources
Pancreatic Islet Cell Transplantation
Plasmapheresis
Transplantation Donor Charges

INSTRUCTIONS FOR USE
The following Coverage Policy applies to health benefit plans administered by Cigna companies. Coverage Policies are intended to provide guidance in interpreting certain standard Cigna benefit plans. Please note, the terms of a customer’s particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer’s benefit plan document may contain a specific exclusion related to a topic addressed in a Coverage Policy. In the event of a conflict, a customer’s benefit plan document always supersedes the information in the Coverage Policies. In the absence of a controlling federal or state coverage mandate, benefits are ultimately determined by the terms of the applicable benefit plan document. Coverage determinations in each specific instance require consideration of 1) the terms of the applicable benefit plan document in effect on the date of service; 2) any applicable laws/regulations; 3) any relevant collateral source materials including Coverage Policies and; 4) the specific facts of the particular situation. Coverage Policies relate exclusively to the administration of health benefit plans. Coverage Policies are not recommendations for treatment and should never be used as treatment guidelines. In certain markets, delegated vendor guidelines may be used to support medical necessity and other coverage determinations. Proprietary information of Cigna. Copyright ©2016 Cigna

Coverage Policy

Note: Selected candidates may be eligible for multi-organ transplantation. In each case, the candidate should meet all of the criteria for selection for the individual transplant being considered.

Kidney Transplantation

Cigna covers kidney transplantation as medically necessary when ANY of the following criteria are met:

- adults (i.e., >18 years of age) measured or calculated creatinine clearance or glomerular filtration rate (GFR) less than or equal to 20 mL/min/1.73m².
- pediatric (i.e., ≤18 years of age) stage 4 chronic kidney disease (estimated GFR <30 mL/min per 1.73m²)
- end-stage renal disease (ESRD) on regularly administered dialysis

Simultaneous Pancreas-Kidney Transplantation

Cigna covers simultaneous pancreas-kidney transplantation as medically necessary when the following criteria are met:

- EITHER of the following indications:
 - type 1 diabetes mellitus
 - pancreatic exocrine insufficiency with renal insufficiency
AND ONE of the following qualifying criteria:

- individual >18 years of age with EITHER of the following:
 - on insulin and C-peptide less than or equal to 2 ng/mL
 - on insulin and C-peptide greater than 2 ng/mL and has a body mass index (BMI) ≤ 28kg/m²
- individual ≤ 18 years of age must be registered on the UNOS waiting list but does not have to meet qualifying criteria

Pancreas-After-Kidney Transplantation

Cigna covers pancreas-after-kidney transplantation (PAK) as medically necessary for an individual with type I diabetes mellitus.

Pancreas Transplantation Alone

Cigna covers pancreas transplantation alone (PTA) as medically necessary for an individual with type I diabetes mellitus, which despite maximal medical management and adherence to treatment recommendations, is poorly controlled as manifested by the presence of BOTH of the following:

- history of frequent, acute and severe metabolic complications (e.g., hypoglycemia, hyperglycemia, ketoacidosis) of such severity that requires medical attention
- failure of insulin-based management to prevent acute complications

Not Covered

Cigna does not cover kidney, pancreas, or pancreas-kidney transplantation for an individual with ANY of the following contraindications to transplant surgery because it is considered not medically necessary (this list may not be all-inclusive):

- malignancy that is expected to significantly limit future survival
- persistent, recurrent or unsuccessfully treated major or systemic extra-renal infections
- systemic illness or comorbidities that would be expected to substantially negatively impact the successful completion and/or outcome of transplant surgery
- a pattern of demonstrated patient noncompliance which would place a transplanted organ at serious risk of failure
- human immunodeficiency virus (HIV) disease unless ALL of the following are noted:
 - CD4 count greater than 200 cells/mm³
 - HIV-1 ribonucleic acid (RNA) undetectable
 - Stable anti-retroviral therapy for more than three months
 - Absence of serious complications associated with HIV disease (e.g., opportunistic infection, including aspergillus, tuberculosis, coccidioidomycosis, or resistant fungal infections; or Kaposi’s sarcoma or other neoplasm)

Cigna does not cover EITHER of the following because each is considered experimental, investigational or unproven (this list may not be all inclusive):

- living donor pancreas transplantation (i.e., partial pancreas transplantation, segmental pancreas transplantation)
- bioartificial pancreas device

General Background

End-stage renal disease (ESRD) occurs when the kidneys are no longer able to function at a level that is necessary for day-to-day life. ESRD almost always follows chronic kidney failure, which may exist for 10–20
years or more before progression to end-stage renal disease (ESRD). Glomerular filtration rate (GFR) is considered the best measure of kidney function. While the lower limit of normal GFR varies with age, a GFR level below 60 mL per minute per 1.73 m² represents loss of one half or more of the adult level of normal kidney function. A GFR of <30 mL/min/1.73 m² is considered to be abnormal in all ages other than neonates.

Kidney failure, (i.e., chronic kidney disease [CKD] stage 5) is defined as either a GFR below 15 mL per minute per 1.73 m² which, in most cases is accompanied by signs and symptoms of uremia, or a need to start kidney replacement therapy (i.e., dialysis or transplantation) for the treatment of complications of decreased GFR (Johnson, et al. 2004; Levey, et al. 2003). Patients with advanced CKD (Kidney Disease Outcomes Quality Initiative [K/DOQITM] CKD Stages 4 and 5) have a high propensity for progression to ESRD in a relatively short period of time with well-known multiple comorbid conditions and poor outcomes (Bolton, 2003).

Kidney Transplantation

Kidney transplantation is the grafting of a kidney from either a living or deceased (i.e., cadaver) donor. Both pediatric and adult kidney transplant recipients have increased survival compared to patients who remain on dialysis.

Kidney transplantation should be timed to occur as close as possible to when the recipient would be expected to require dialysis; however, transplantation should be delayed in patients who may regain kidney function (e.g., malignant hypertension, severe, acute tubular necrosis). Transplantation performed prior to the need for dialysis is called preemptive transplantation. It confers a survival advantage to the recipient and is more common for recipients of living-donor kidneys. Preemptive kidney transplant has been shown to provide better outcomes compared to transplant after any period of time on dialysis; however, because of the shortage of donors, preemptive transplantation may not be possible.

The United Network for Organ Sharing/Organ Procurement Transplant Network (OPTN, 2016) have established organ allocation registration and waiting time criteria for kidney transplantation depending on the age of the transplant candidate. Adults (i.e., individuals >18 years) with may be listed if the measured or calculated creatinine clearance or glomerular filtration rate (GFR) less than or equal to 20 L/min or have end-stage renal disease (ESRD) on regularly administered dialysis. An individual ≤18 years of age may be listed if they have ESRD and are on regularly administered dialysis, regardless of clinical criteria for creatinine clearance or GFR. Dialysis is generally considered in an individual with ESRD stages 4 or greater.

Living-donor kidneys account for approximately 40% of all kidney transplants (Markmann, et al., 2007). Living donors can be related or unrelated to the recipient. Living kidney donation eliminates the recipient’s need for waiting time on a national waiting list, are often more successful, and can add psychological benefits to both donor and recipient. Nonetheless, the benefit to the recipient of a live-donor organ must outweigh the risks to the donor. In the absence of a living donor, many transplanted kidneys come from deceased (i.e., cadaver) organ donors. One-, three-, and five-year graft survival rates for cadaver kidney transplantation are 91.9%, 82.4% and 72.1%, respectively (OPTN, 1997-2004, based on OPTN data as of Aug 8, 2016). In comparison, one-, three- and five-year graft survival rates for living donor kidney transplantation are 95.1%, 87.9% and 79.8%, respectively.

Donor Matching

Donor Matching
In the event that an ABO-identical or minor mismatch donor is unavailable, the use of an ABO mismatched donor may be the best option for some kidney transplantation candidates. Recent studies have demonstrated that an ABO mismatched living donor transplant may result in survival rates close to those achieved with compatible grafts, although recipients with high anti-blood group titers before plasmapheresis have been reported to have higher rates of humeral rejection and early graft loss (Shimmura, et al., 2000; Sonnenday, et al., 2004; Stegall, et al., 2004; Kaihara, et al., 2005).

Extended Criteria Donor Kidney
In an effort to address the shortage of kidneys available for transplantation, the kidney allocation algorithm was modified in October 2002 to expedite the distribution of kidneys with less favorable donor characteristics, known as extended criteria donor (ECD) kidneys. This includes kidneys from donors over the age of 60 or ages 50–60 with two or all three of the following criteria:

- pre-donation serum creatinine greater than 1.5 mg/dL (milligrams per deciliter)
• stroke as cause of death
• hypertension

Graft and patient survival for ECD kidney recipients are not as favorable as those for non-ECD kidney recipients, and both of these groups have lower survival than patients who received living-donor kidneys.

Kidney Allocation System (KAS): A new kidney allocation system (KAS) was developed by the Organ Procurement and Transplantation Network (OPTN) Kidney Transplantation Committee in response to higher than necessary discard rates of kidneys, variability in access to transplants for candidates who are harder to match due to biologic reasons, and a matching system that results in unrealized life years and high re-transplantation rates. The new KAS was implemented in December 2014.

The KAS includes the following changes:

- replacement of the current kidney donor quality metric with the Kidney Donor Profile Index (KDPI)
- adult transplant candidates will receive an Expected Post Transplant Survival (EPTS) score
- allocation rules will use the KDPI for donors and the EPTS score for longevity matching between donors and recipients.
- sensitized candidates will be given increased priority through a sliding scale points system for calculated panel reactive antibodies (CPRA) and regional and national sharing for very highly sensitized candidates
- pre-registration dialysis time will be included in a candidate’s waiting time.
- increased access to donor kidneys for blood type B candidates
- elimination of the payback system
- other variances are being eliminated with implementation of the new system.

Retransplantation

In general, retransplantation is considered by some to be a controversial procedure, in part due to ethical concerns over the limited supply of organs. A wide range of donor, recipient and other transplant-related factors can influence graft survival. In the event of renal graft failure, renal replacement therapy consists of either dialysis or retransplantation. Although allograft survival is considered good, it is considerably less compared to the primary transplant (Ahmed, et al., 2008). Candidates awaiting kidney retransplant are often allosensitized and may be less likely to receive a transplant than primary candidates. As a result, some transplant centers have developed ongoing efforts involving desensitization protocols to prevent antibody-mediated acute rejection. Although desensitization protocols may be considered for deceased donor kidney, protocols are generally attempted with living donation so that antibody response against donor tissue can be monitored; patients proceed to transplant surgery only if antibody levels are low. Authors contend that desensitizing highly sensitive patients improves clinical outcomes (short-term patient and graft survival) however acute antibody-mediated rejection is a barrier in 20-30% of patients and there is no consensus regarding which protocol is ideal (Akalin, 2009). One-, three- and five-year graft survival rates for repeat kidney transplantation are 89.7%, 78.2% and 67.0%, respectively (OPTN, 1997-2004, based on OPTN data as of Aug 8, 2016).

Simultaneous Pancreas-Kidney Transplantation and Pancreas Transplantation Alone

The standard treatment for control of blood sugar levels in type I diabetes mellitus (DM) is the use of exogenous insulin; however, this does not entirely restore normal glucose metabolism. Pancreas transplantation eliminates the need for exogenous insulin, daily glucose monitoring and many dietary restrictions imposed by diabetes. Additional benefits of pancreas transplantation include the elimination of life-threatening risks of hypoglycemic unawareness and prevention and reversal of diabetic nephropathy (Bloom, et al., 2005). Replacement by organ (pancreas transplantation) may be performed simultaneously with kidney transplants (i.e., simultaneous pancreas kidney [SPK]) or after a kidney transplant (i.e., pancreas after kidney [PAK]) in individuals who are uremic, or alone in individuals who are nonuremic (i.e., pancreas transplant alone [PTA]). The donated kidney may be from a living donor or a cadaveric donor.

Type I Diabetes Mellitus (DM)

Type I diabetes mellitus, also known as insulin-dependent diabetes mellitus (IDDM) and juvenile-onset diabetes, results from a cellular-mediated autoimmune destruction of the beta cells (β-cells) located in the islets of Langerhans in the pancreas. The primary purpose of β-cells is to store and release insulin. The rate of β-cell
destruction varies being rapid in infants and children and slow in adults. Destruction of these cells leads to progressive insulin deficiency and hyperglycemia. Individuals with type I DM require insulin therapy for life.

Markers of the immune destruction of the β-cell include islet cell autoantibodies, autoantibodies to insulin, autoantibodies to glutamic acid decarboxylase (GAD65), and autoantibodies to several tyrosine phosphatases. At least one, and usually more of these autoantibodies are present in 85–90% of individuals when fasting hyperglycemia is initially detected. Autoantibody testing is performed to help distinguish type I from type 2 DM. The presence of insulin antibodies is common in individuals who are taking insulin and is not an indicator of the type of diabetes (ADA, 2013; Bylund and Nakamura, 2011; Eisenbarth and Buse 2011; Towns and Pietropaolo, 2011).

Adults particularly may retain residual β-cell function sufficient to prevent ketoacidosis for many years although they may eventually become dependent on insulin for survival and are at risk for ketoacidosis. Little or no insulin production is manifested by low or undetectable levels of plasma C-peptide (ADA, 2013). C-peptide is a polypeptide of 31 amino acids and a byproduct of insulin production. The level of C-peptide in the body reflects the amount of insulin being produced and can be measured to determine if a patient has type I or type 2 diabetes. An individual with type I DM whose pancreas does not make insulin has a low level of C-peptide.

Type II Diabetes Mellitus (DM)

Pancreas transplant is not typically used for the treatment of individuals with type II DM. In contrast to persons with type 1 DM, individuals who have type II DM produce some insulin; however, for unknown reasons, the body is unable to use it effectively. While in general there is no simple laboratory test to distinguish between type I and type II DM, C-peptide levels are often used to verify insulinopenia, in combination with a documented clinical exam and/or insulin sensitivity and resistance testing. Clearly identifying individuals with type II DM who are candidates for pancreas transplant is challenging; C-peptide levels increase in the presence of renal disease and there is limited information regarding C-peptide levels for defining the type of diabetes in study subjects with ESRD.

Typically, a person with type II DM has a normal C-peptide level. A fasting C-peptide level that is ≤ 110% of the lower limit of normal of the laboratory’s measurement method and a concurrently obtained fasting glucose of ≤ 225 mg/dL is indicative of insulinopenic type II DM. For example, if the laboratory normal C-peptide range was 0.78–1.89 nanograms/milliliter (ng/mL) then the individual with insulopenic type II DM without renal insufficiency would have a value of ≤ 0.86 ng/mL and with renal sufficiency would have a value of ≤ 1.56 ng/mL. Insulopenia is diagnosed in less than 5% of type II DM (NLM, 2014; Centers for Medicare and Medicaid [CMS], 2005; CMS, 2001).

Despite these challenges, some authors have proposed pancreas transplantation to achieve insulin independence in persons with type II DM demonstrating insulinopenia, and have shown encouraging results (Light and Barhyte, 2005; Nath, et al., 2005). However, evidence in the peer-reviewed, published scientific literature supporting the ability of pancreas transplantation to achieve insulin independence in this subset of individuals has not been consistently demonstrated and is not a proven standard of care. Pancreas transplantation as an alternative treatment for individuals with type II DM and insulinopenia remains controversial.

Living Donor Pancreas Transplantation

Both the American Diabetes Association and the United Network for Organ Sharing (UNOS) recognize and provide information regarding living donor pancreas transplantation. Living donor pancreas transplantation has been performed in a few centers, including those outside the United States; however it is not considered widespread in clinical practice. In many cases, the living pancreas donor is a relative of the recipient. In the United States living donor pancreas transplantation has been largely studied at one center, the University of Minnesota. Barr et al. (2006) reported that at the University of Minnesota there were 130 live donor pancreas transplants between 1977 and 2005; 20 PTA and PAK live donor grafts were functioning between 10 and 20 years following transplant; 3 living donor SPK were functioning greater than 10 years.

Living donor pancreas transplantation has a higher technical failure rate and potential for complications associated with the donor operation (Gruessner, et al., 2001). There is potential risk for development of diabetes in the donor and ongoing assessment is important. Other considerations include the risk of serious organ-specific complications, such as pancreatitis, leak and pseudocyst. Furthermore, possible deterioration of
glucose metabolism as a result of the hemipancreatectomy is a lifelong concern to the donor. Nevertheless, compared to a matched deceased organ, the use of a living donor pancreas reduces wait time, offers enhanced immunologic compatibility, and decreases cold ischemic injury. Recipient selection criteria for living donor pancreas transplantation have not been clearly defined in the medical literature.

The evidence for living donor pancreas transplantation is primarily in the form of few retrospective case series, case reports, and patient-registry data (Troppman, et al., 1996; Grussner, et al. 1997; Humar, et al., 1997; Tan, et al., 2005; Horgan, et al., 2007). Measured outcomes include graft and patient survival and as well as adverse events. A small number of case studies have suggested a patient survival rate of up to 85-90% at five years after receiving a living-related donor pancreas transplant (Grussner, et al., 2001; Humar, et al., 1997). Evidence regarding the long-term effects of transplant on glycemic control or the impact on secondary diabetic complications is limited. Additionally, the peer-reviewed scientific evidence suggests living donor pancreas grafts are more prone to arterial and venous thrombosis and infection, although graft rejection is lower compared to cadaveric transplant. Long-term clinical outcomes have not been reported and it has not been clearly established that living donor pancreas transplantation reverses complications associated with diabetes. However, in the short-term, there is limited evidence supporting normalizing insulin production for selected individuals.

Simultaneous Pancreas-Kidney (SPK)/Pancreas-after-Kidney (PAK)

Kidney failure is a major complication of DM and, as a result, most potential pancreas transplant recipients are also uremic. Due to the poor five-year survival rate of individuals with DM who are on dialysis, kidney transplantation is the treatment of choice for individuals with DM who have ESRD and are on dialysis.

Individuals with type 1 DM and impending or established ESRD who have minimal or limited secondary complications of DM are considered optimal candidates for kidney transplantation (Pirsch and Stratta, 2001). SPK is performed to correct complications of type 1 DM and renal failure with reliance on dialysis. In individuals with type 1 DM who have had a successful kidney transplantation to correct previous uremia, PAK is performed to improve quality of life by: 1) eliminating the need for exogenous insulin and its associated difficulty controlling glucose levels; and 2) to limit secondary diabetic complications, including retinopathy, neuropathy, nephropathy, and vasculopathy. There is some concern regarding the appropriateness of pancreas transplantation because of the increased morbidity associated with the procedure and the lack of controlled trials that demonstrate a significant benefit on secondary complications of DM. Despite these concerns, pancreas transplantation is an appropriate option for individuals with DM who have complications, since it can enhance quality of life and is the single most effective method of achieving tight glucose control (Pirsch and Stratta, 2001).

UNOS/OPTN have established qualifying allocation criteria for pancreas transplantation recipients. The candidate must have diabetes mellitus or pancreatic exocrine insufficiency with renal insufficiency. An individual >18 years include must be on insulin and have a C-peptide ≤2ng/mL or on insulin, have a C-peptide ≥2ng/mL and have a body mass index (BMI) ≤28kg/m² to meet additional registration and waiting time criteria. An individual ≤18 years does not have to meet these additional qualifying criteria.

Evidence in the scientific published literature supports SPK and PAK transplantation as an appropriate therapeutic intervention for individuals with type I DM who require or have previously had a kidney transplant (Dieterle, et al., 2007; Grochowiecki, et al., 2006; Larsen, et al., 2004; Knoll and Nichol, 2003; Reddy, et al., 2003; Bunnapradist, et al., 2003; Sureshkumar, et al., 2002; Humar, et al., 2001). Morath et al. (2009) reported that evidence suggests longstanding normoglycemia can halt or even reverse diabetic lesions in various organs such as the heart and kidney, surgical complication rates are low, and with potent immunosuppressive medication long term allograft and patient survival are excellent (Morath, et al., 2009). SPK and PAK is a well established and accepted method of treatment for these individuals.

Pancreas Transplantation Alone (PTA)

Pancreas transplantation alone (PTA) may be indicated for individuals who have uncontrolled type 1 DM (i.e., abnormal hemoglobin A₁c, inability to maintain blood glucose levels in the normal range) but adequate renal function. The purpose of PTA is to control blood glucose levels and to prevent diabetes-related complications of retinopathy, neuropathy or end-stage renal disease.
Evidence in the published scientific literature is mixed regarding survival rates and improved outcomes associated with PTA (Venstrom, et al., 2003; Gruessner, et al., 2004); however, most patients who undergo PTA achieve insulin independence.

Retransplantation
Due to surgical and immunological problems, graft failure after transplantation is high. Complications related to vascular problems, urologic problems, exocrine pancreatic drainage, pancreatitis and wound infections have been reported in the literature. More recently however, it has been noted that improvements in preservation, technical aspects of the procedure and newer immunosuppressive therapies have led to reduced graft failure rates (Ming and Chen, 2007).

For all three types of pancreas transplants, survival rates for a second transplant are lower than for the primary transplant, although an elective retransplant may be considered suitable for a select group of patients (Humar, et al., 2000; International Pancreas Transplant Registry, 2004; Genzini, et al.2006; Sansalone et al., 2006; Fellmer, et al., 2007). According to the registry, there was no significant difference in graft survival rates for all types of pancreas retransplant. For SPK there is a significant difference between retransplant and primary transplant graft survival at one year (85.2% versus 91.7%, respectively). Pancreas alone graft survival rates for PTA retransplant were similar to primary transplants (71.1% versus 78.1%, respectively) (OPTN, 1997-2004, based on OPTN data as of Aug 8, 2016). The medical literature suggests in some patients, a retransplant could improve health outcomes after graft loss, although there is insufficient data regarding health outcomes associated with third and subsequent pancreas transplants to allow strong conclusions.

Professional Societies/Organizations

American Diabetes Association (ADA): Based on a technical review, the ADA has adopted the position that PTA should only be considered in type 1 diabetic patients who exhibit the three following criteria: 1) a history of frequent, acute and severe metabolic complications (e.g., hypoglycemia, hyperglycemia and ketoacidosis) requiring medical attention; 2) incapacitating clinical and emotional problems with exogenous insulin therapy; and 3) acute complications despite insulin-based management. Furthermore, pancreas transplantation should be considered an acceptable therapeutic alternative to continued insulin therapy in diabetic patients with imminent or established ESRD who have had or plan to have a kidney transplant, because the successful addition of a pancreas does not jeopardize patient survival, may improve kidney survival, and will restore normal glycemia (Robertson, et al., 2006).

Contraindications to Kidney Transplantation, Pancreas-Kidney Transplantation, and Pancreas Transplant Alone
Many factors affect the outcome of a solid organ transplant. A fairly rigid selection process is required in order to obtain the best result for each patient. In addition to the absolute contraindications noted in the Coverage Position above, relative contraindications to pancreas or pancreas-kidney transplantation include, but are not limited to, the following (Becker, 2012; Bunnapradist, 2007; Knoll, 2005; Hillerman, 2002; Danovitch, 2001; Kaisiske, 2001;Steinman, 2001):

- active substance abuse within the last six months, including tobacco, alcohol and narcotic/other addictive pain medications
- potential complications from immunosuppressive medications that are unacceptable to the patient
- cerebrovascular disease or accident or progressive neuropathy or myopathy that is not amenable to rehabilitation
- body mass index (BMI) less than 17 or greater than 33
- any active medical process that is currently not optimally treated and/or stable and that is likely to result in end-organ damage or medical emergency without appropriate management, such as active peptic ulcer disease, diverticular disease, active hepatitis, cholecystitis, pancreatitis, hypertension, autoimmune disease or cytopenia
- untreated osteoporosis with a T-score greater than 2.5 standard deviations (SD) from mean or Z-score greater than two SD from mean
- hepatic fibrosis or cirrhosis
- hepatitis C with biopsy-proven, histologic evidence of hepatic disease
- uncorrected abdominal aortic aneurysm greater than four centimeters
- advanced age
• peripheral vascular disease not amenable to surgical or percutaneous therapy as evidenced by:
  asymptomatic stenosis greater than 75% or symptomatic carotid stenosis of less severity
  ankle brachial index less than 0.7 or substantial risk of limb loss with diminished perfusion

• systemic infection making immune response risky, including human immunodeficiency virus (HIV),
 hepatitis B virus (HBV) in the recipient or cytomegalovirus (CMV) in the donor

Additionally, there are other conditions that may affect the outcome of kidney transplantation, pancreas-kidney transplantation and pancreas alone transplantation and require further investigation to ensure the best chance for successful transplantation:

• history of recurrent infection or bladder dysfunction indicates the need for a urological evaluation
• potential for renal malignancy should be screened by use of magnetic resonance imaging (MRI),
 computed tomography (CT) or renal ultrasound
• reflux nephropathy, history of recurrent infections, nephrolithiasis, heavy proteinuria,
 hypertension resistant to therapy, or enlarged or symptomatic polycystic kidneys should be
 evaluated for potential nephrectomy

For pancreas-kidney transplantation further investigation for the following should occur to ensure the best chance for successful pancreas-kidney transplantation:

• autosomal dominant polycystic kidney disease (ADPKD): high-resolution CT or MRI to evaluate for
 intracranial aneurysms

Bioartificial Pancreas
Bioartificial pancreas devices are currently being investigated by some authors. In theory, the technology involves transplanting healthy islet cells (pancreatic cells that release insulin) into a subject with diabetes; current studies consist mainly of animal trials. Islet cell sources include human or allogeneic cells, porcine or xenographic cells, and engineered cells. The islet cells are encapsulated with a semipermeable membrane, such as hydrogel or polymer, and are then placed in the body. Authors contend the bioartificial pancreas device acts a substitute for the endocrine portion of the pancreas, avoiding obstacles in islet cell transplantation which include limited supply and immunosuppressive drug therapy. The optimal site for implantation has not been clearly defined, although the intended use is for implantation into a vascular site or the peritoneal cavity.

The American Board of Internal Medicine’s (ABIM) Foundation Choosing Wisely® Initiative (2014): No relevant statements.

Use Outside of the US: No relevant information.

Summary
Kidney transplantation is an accepted and successful treatment for many individuals with end-stage renal disease (ESRD). The transplant evaluation should begin when it is clear that the patient is destined to develop ESRD. In the event of subsequent renal graft failure, retransplantation is often performed.

Pancreas transplantation has been demonstrated to improve the quality of life of people with diabetes, primarily by eliminating acute complications. Pancreas transplantation alone (PTA) and pancreas transplant after kidney transplant (PAK) are viable options in the management of patients with uncontrolled or severely disabling type I diabetes mellitus (DM) with adequate renal function. Simultaneous pancreas kidney transplant (SPK) is considered a treatment option for individuals with type I DM with pancreatic exocrine insufficiency and renal insufficiency, and if >18 years on insulin with a C-peptide ≤ 2 ng/mL or >2 ng/mL with a body mass index ≤ 28 kg/m².

There is insufficient evidence in the peer reviewed scientific literature to support safety and efficacy for living donor pancreas transplantation and bioartificial pancreas devices.
Coding/Billing Information

Note: 1) This list of codes may not be all-inclusive.
 2) Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement

Kidney Transplantation

Covered when medically necessary:

<table>
<thead>
<tr>
<th>CPT®* Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50300</td>
<td>Donor nephrectomy (including cold preservation); from cadaver donor, unilateral or bilateral</td>
</tr>
<tr>
<td>50320</td>
<td>Donor nephrectomy (including cold preservation); open, from living donor</td>
</tr>
<tr>
<td>50323</td>
<td>Backbench standard preparation of cadaver donor renal allograft prior to transplantation, including dissection and removal of perinephric fat, diaphragmatic and retroperitoneal attachments, excision of adrenal gland, and preparation of ureter(s), renal vein(s), and renal artery(s), ligating branches, as necessary</td>
</tr>
<tr>
<td>50325</td>
<td>Backbench standard preparation of living donor renal allograft (open or laparoscopic) prior to transplantation, including dissection and removal of perinephric fat and preparation of ureter(s), renal vein(s), and renal artery(s), ligating branches, as necessary</td>
</tr>
<tr>
<td>50327</td>
<td>Backbench reconstruction of cadaver or living donor renal allograft prior to transplantation; venous anastomosis, each</td>
</tr>
<tr>
<td>50328</td>
<td>Backbench reconstruction of cadaver or living donor renal allograft prior to transplantation; arterial anastomosis, each</td>
</tr>
<tr>
<td>50329</td>
<td>Backbench reconstruction of cadaver or living donor renal allograft prior to transplantation; ureteral anastomosis, each</td>
</tr>
<tr>
<td>50340</td>
<td>Recipient nephrectomy (separate procedure)</td>
</tr>
<tr>
<td>50360</td>
<td>Renal allotransplantation, implantation of graft; without recipient nephrectomy</td>
</tr>
<tr>
<td>50365</td>
<td>Renal allotransplantation, implantation of graft; with recipient nephrectomy</td>
</tr>
<tr>
<td>50370</td>
<td>Removal of transplanted renal allograft</td>
</tr>
<tr>
<td>50547</td>
<td>Laparoscopy, surgical; donor nephrectomy (including cold preservation), from living donor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCPCS Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2152</td>
<td>Solid organ(s), complete or segmental, single organ or combination of organs; deceased or living donor(s), procurement, transplantation, and related complications; including: drugs; supplies; hospitalization with outpatient follow-up; medical/surgical, diagnostic, emergency, and rehabilitative services, and the number of days of pre- and post-transplant care in the global definition</td>
</tr>
</tbody>
</table>

Simultaneous Pancreas-Kidney Transplantation

Covered when medically necessary:

<table>
<thead>
<tr>
<th>CPT®* Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>48550</td>
<td>Donor pancreatectomy (including cold preservation), with or without duodenal segment for transplantation</td>
</tr>
<tr>
<td>48551</td>
<td>Backbench standard preparation of cadaver donor pancreas allograft prior to transplantation, including dissection of allograft from surrounding soft tissues,</td>
</tr>
<tr>
<td>HCPCS Codes</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>S2065</td>
<td>Simultaneous pancreas kidney transplantation</td>
</tr>
<tr>
<td>S2152</td>
<td>Solid organ(s), complete or segmental, single organ or combination of organs; deceased or living donor(s), procurement, transplantation, and related complications; including: drugs; supplies; hospitalization with outpatient follow-up; medical/surgical, diagnostic, emergency, and rehabilitative services, and the number of days of pre- and post-transplant care in the global definition</td>
</tr>
</tbody>
</table>

Pancreas-After-Kidney Transplantation

Covered when medically necessary:

<table>
<thead>
<tr>
<th>CPT** Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>48550</td>
<td>Donor pancreatectomy (including cold preservation), with or without duodenal segment for transplantation</td>
</tr>
<tr>
<td>48551</td>
<td>Backbench standard preparation of cadaver donor pancreas allograft prior to transplantation, including dissection of allograft from surrounding soft tissues, splenectomy, duodenotomy, ligation of bile duct, ligation of mesenteric vessels, and Y-graft arterial anastomoses from iliac artery to superior mesenteric artery and to splenic artery</td>
</tr>
<tr>
<td>48552</td>
<td>Backbench reconstruction of cadaver donor pancreas allograft prior to transplantation, venous anastomosis, each</td>
</tr>
<tr>
<td>48554</td>
<td>Transplantation of pancreatic allograft</td>
</tr>
</tbody>
</table>
Removal of transplanted pancreatic allograft

<table>
<thead>
<tr>
<th>HCPCS Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2152</td>
<td>Solid organ(s), complete or segmental, single organ or combination of organs; deceased or living donor(s), procurement, transplantation, and related complications; including: drugs; supplies; hospitalization with outpatient follow-up; medical/surgical, diagnostic, emergency, and rehabilitative services, and the number of days of pre- and post-transplant care in the global definition</td>
</tr>
</tbody>
</table>

Pancreas Transplantation Alone

Covered when medically necessary:

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>48550</td>
<td>Donor pancreatectomy (including cold preservation), with or without duodenal segment for transplantation</td>
</tr>
<tr>
<td>48551</td>
<td>Backbench standard preparation of cadaver donor pancreas allograft prior to transplantation, including dissection of allograft from surrounding soft tissues, splenectomy, duodenotomy, ligation of bile duct, ligation of mesenteric vessels, and Y-graft arterial anastomoses from iliac artery to superior mesenteric artery and to splenic artery</td>
</tr>
<tr>
<td>48552</td>
<td>Backbench reconstruction of cadaver donor pancreas allograft prior to transplantation, venous anastomosis, each</td>
</tr>
<tr>
<td>48554</td>
<td>Transplantation of pancreatic allograft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCPCS Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2152</td>
<td>Solid organ(s), complete or segmental, single organ or combination of organs; deceased or living donor(s), procurement, transplantation, and related complications; including: drugs; supplies; hospitalization with outpatient follow-up; medical/surgical, diagnostic, emergency, and rehabilitative services, and the number of days of pre- and post-transplant care in the global definition</td>
</tr>
</tbody>
</table>

Experimental, Investigational/Unproven/Not Covered when used to report living donor pancreas transplantation (i.e., partial pancreas transplantation, segmental pancreas transplantation):

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>48999</td>
<td>Unlisted procedure, pancreas</td>
</tr>
</tbody>
</table>

Experimental, Investigational/Unproven/Not Covered when used to report bioartificial pancreas device:

<table>
<thead>
<tr>
<th>HCPCS Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L8699</td>
<td>Prosthetic implant, not otherwise specified</td>
</tr>
</tbody>
</table>

References

The registered marks "Cigna" and the "Tree of Life" logo are owned by Cigna Intellectual Property, Inc., licensed for use by Cigna Corporation and its operating subsidiaries. All products and services are provided by or through such operating subsidiaries and not by Cigna Corporation. Such operating subsidiaries include Connecticut General Life Insurance Company, Cigna Health and Life Insurance Company, Cigna Behavioral Health, Inc., Cigna Health Management, Inc., and HMO or service company subsidiaries of Cigna Health Corporation.