Prothrombin Time Home Testing Systems

INSTRUCTIONS FOR USE
The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide utilization review services to clients and do not make coverage determinations. References to standard benefit plan language and coverage determinations do not apply to those clients. Coverage Policies are intended to provide guidance in interpreting certain standard benefit plans administered by Cigna Companies. Please note, the terms of a customer's particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer's benefit plan document may contain a specific exclusion related to a topic addressed in a Coverage Policy. In the event of a conflict, a customer's benefit plan document always supersedes the information in the Coverage Policies. In the absence of a controlling federal or state coverage mandate, benefits are ultimately determined by the terms of the applicable benefit plan document. Coverage determinations in each specific instance require consideration of 1) the terms of the applicable benefit plan document in effect on the date of service; 2) any applicable laws/regulations; 3) any relevant collateral source materials including Coverage Policies and; 4) the specific facts of the particular situation. Coverage Policies relate exclusively to the administration of health benefit plans. Coverage Policies are not recommendations for treatment and should never be used as treatment guidelines. In certain markets, delegated vendor guidelines may be used to support medical necessity and other coverage determinations.

Coverage Policy

Coverage for Durable Medical Equipment (DME) including prothrombin time home testing systems varies across plans.

If coverage for prothrombin time home testing systems is available, the following conditions of coverage apply.

A prothrombin time home testing system is considered medically necessary for an individual receiving long-term oral anticoagulation therapy with warfarin (i.e., six months or longer) who is a suitable candidate for self-management.

Additional software or hardware required for downloading data from home prothrombin time testing systems to computers for the management of anticoagulation is considered a convenience item and not medically necessary.

Overview

This Coverage Policy addresses the use of prothrombin time testing systems in the home for individuals requiring long-term anticoagulation with warfarin.
General Background

Prothrombin time (PT) home monitoring systems are portable, battery-operated instruments for the quantitative determination of PT from fingerstick whole blood. These products are generally designed to aid in the management of patients requiring long-term oral anticoagulation therapy for indications such as mechanical heart valves, atrial fibrillation, and venous thromboembolism (Centers for Medicare and Medicaid Services [CMS], 2008). There are several types of point of care (POC) PT monitors on the market, including office, anticoagulation clinic, or home settings. For home testing, the instrument selected should be extremely easy to use with a limited number of steps.

Technological advances in PT measurement offer the potential for both simplifying and improving oral anticoagulation management. Portable PT monitors suitable for patient self-testing at home are currently available. The monitors measure the thromboplastin-mediated clotting time that is then converted to a plasma PT or an international normalized ratio (INR) (Macik et al., 2001). The INR is calculated as follows: INR = patient PT divided by mean normal PT. Studies indicate that the results of home PT self-monitoring appear to be as good as those of the standard laboratory equipment studied. POC PT instruments using capillary blood correlated well with the reference laboratory for both health care provider (i.e., venous sample, r=93) and the patient (i.e., capillary sample, r=93). PT results for fingersticks performed by both the patient and the health care provider were equivalent and correlated highly (r=91) (Hirsh, et al., 2003).

Patient self-testing (PST) and patient self-management (PSM) with home POC PT monitors allows the patient the ability to test when it is needed and to adjust the dose as needed. A systematic review of indicated that self-monitoring of anticoagulation led to significant reductions in thromboembolic events, all-cause mortality, and major hemorrhage (Heneghan, et al., 2006). It has also been found that patient self-monitoring was more effective than usual care provided by family doctors and as effective as good-quality specialized anticoagulation clinics in maintaining the quality of anticoagulation therapy.

Patient training is required before PT self-monitoring is undertaken to ensure that the patient knows the proper technique to obtain and apply a capillary blood sample and how to use and maintain the POC monitoring device. Patients should have a working knowledge of hemostasis and oral anticoagulation therapy, the potential adverse effects, and possible consequences of drug interactions to enable them to respond and make appropriate treatment adjustments. Patient educators include specially trained teachers, anticoagulant nurses, and physicians. Training on technique and use of PT self-monitoring usually occurred in small groups of one to six patients.

Some monitors have associated data management systems including software which may provide an easier way to track test results and communicate them with a physician or health care professional. Data management systems, including software, associated with home PT monitors is generally considered a convenience and not medically necessary. There is insufficient peer-reviewed literature to support the use of data management systems in improving health outcomes.

U.S. Food and Drug Administration (FDA)
The FDA has approved portable testing devices that are available by prescription for home use as Class II devices through the 510(k) process. They include, but are not limited to:

- CoaguChek® XS System (Roche Diagnostics Corporation, Indianapolis, IN)
- AvoSure™ PT (Avocet Medical Inc., San Jose, CA)

Literature Review
To clarify the value of self-monitoring of oral anticoagulation, Heneghan et al. (2012) conducted a systematic review and meta-analysis of individual patient data in 11 randomized trials (6417 participants) that proposed to address several gaps in the evidence, including an estimate of the effect on time to death, first major hemorrhage, and thromboembolism. The review compared the effects of self-monitoring (self-testing) or self-management (self-testing and self-dosage) of anticoagulation with control and dosage by personal physician,
anticoagulation management clinics, or managed services, or reported the clinical outcomes of thromboembolic events and major bleeding episodes. The review found a significant reduction in thromboembolic events in the self-monitoring group (hazard ratio 0.51; 95% CI 0.31–0.85) but not for major hemorrhagic events (0.88, 0.74–1.06) or death (0.82, 0.62–1.09). Participants younger than 55 years demonstrated a significant reduction in thrombotic events (hazard ratio 0.33, 95% CI 0.17–0.66), as did participants with mechanical heart valve (0.52, 0.35–0.77). Analysis of the major outcomes in the very elderly (age ≥85 years; n=99) showed no significant adverse effects of the intervention for all outcomes.

Bloomfield et al. (2011) reported on a meta-analysis of 22 randomized, controlled trials (8413 patients) to determine whether, for outpatient adults receiving long-term anticoagulant therapy, management of oral anticoagulant therapy using PST (alone or in combination with PSM) compared with oral anticoagulant therapy managed entirely by health care professionals in clinical settings is associated with fewer thromboembolic complications and decreased all-cause mortality, without an increased risk for a major bleeding event. The review was performed as part of the Veterans Administration (VA) Evidence-based Synthesis Program (ESP) Center. The review found that self-monitoring, with or without self-management of warfarin dosing, resulted in fewer deaths and thromboembolic events than usual care, without an increase in serious bleeding events.

Heneghan et al. (2017) reported on an update to a Cochrane review that evaluated the effects of self-monitoring or self-management of oral anticoagulant therapy compared to standard monitoring. The review included ten new studies (with 4227 participants) added to the original review (Garcia-Alamino, et al., 2010). The review included 28 randomized trials (8,950 participants) that compared self-monitoring and self-management with standard monitoring. The quality of the evidence was generally low to moderate. The combined results of the trials showed a halving of thromboembolic events with self-monitoring and self-management and no reduction in the number of major bleeds. Self-management had similar reductions in thromboembolic events and mortality to the overall benefit, with no effect on major bleeds. Self-monitoring halved the number of major hemorrhages that occurred but did not significantly reduce the rates of thrombotic events or all-cause mortality. The authors concluded that “self-monitoring or self-management can improve the quality of oral anticoagulant therapy, leading to fewer thromboembolic events and lower mortality, without a reduction in the number of major bleeds. Self-monitoring and self-management are not feasible for all patients, which requires the identification and education of suitable patients.”

A systematic review and meta-analysis of ten trials was conducted to evaluate the efficacy and safety of self-management of oral anticoagulant therapy for patients on long-term oral anticoagulant therapy (Christensen, et al., 2007). The authors noted various methodological problems with the majority of the trials. Outcomes measured included death, minor and major complications (thromboembolic and bleeding events) and time within the therapeutic INR range. Overall, self-management was associated with a reduced risk of death (relative risk (RR) =0.48, 95% confidence interval (CI) 0.29–0.79, p = 0.004), major complications (RR =0.58, 95% CI 0.42–0.81, p = 0.001), and with increasing time in the therapeutic INR range (weighted mean difference = 6.53, 95% CI 2.24–10.82, p = 0.003). There was no difference in minor complications (p = 0.96). The analysis suggests that self-management of oral anticoagulant therapy may have better outcomes than conventional therapy in highly selected patients.

A systematic review and meta-analysis of 16 randomized and eight non-randomized trials was conducted by the Health Technology Assessment Programme (United Kingdom) (Connock, et al., 2007). Patients self-monitoring was found to be as effective as usual care provided by family doctors and as effective as specialized anticoagulation clinics in maintaining the quality of anticoagulation therapy. There was no significant risk difference of major bleeding events between patients self-monitoring and usual care controls. Pooled analyses noted that compared with primary care or anticoagulation control clinics, self-monitoring was statically significantly associated with fewer thromboembolic events. The study concluded that “for selected and successfully trained patients, self-monitoring is effective and safe for long-term oral anticoagulation therapy.”

A systematic review and meta-analysis of 14 randomized, controlled trials was performed to assess the effects of self-monitoring or self-management of anticoagulation compared with standard monitoring (Heneghan, et al., 2006). Outcomes analyzed were: major hemorrhage, thromboembolic events, death, tests in range, minor hemorrhage, frequency of testing, and feasibility of self-monitoring. The pooled estimates showed significant reductions in thromboembolic events (i.e., odds ratio (OR) 0.45, 95% CI 0.30–0.68), all-cause mortality (OR
0.61, 95%CI 0.38–0.98), and major hemorrhage (OR 0.65, 95% CI 0.42–0.99). Trials of combined self-monitoring and self-adjusted therapy showed significant reductions in thromboembolic events (OR 0.27, 95% CI 0.12–0.59) and death (OR 0.37, 95% CI 0.16–0.85), but no major hemorrhage (OR 0.93, 95% CI 0.42–2.05). No difference was noted in minor hemorrhage. Eleven trials reported improvements in the mean proportion of INR ratios in range. The authors report that self-management improves the quality of oral anticoagulation and that self-monitoring is not feasible for all patients and requires identification and education of suitable candidates.

Several randomized, controlled studies have been published that evaluate self-testing and self-management of oral anticoagulation therapy (Thompson, et al., 2013; Matchar, et al., 2010; Gardiner, et al, 2006; Mendez-Jandula, et al., 2005; Gadisseur, et al., 2003; Fitzmaurice, et al., 2002; Pierce, et al., 2000; Beyth, et al., 2000; Sawicki, et al., 1999). The studies indicate that this testing is as safe and effective as that delivered by physicians and anticoagulation clinics and may be suitable for selected patients.

Professional Societies/Organizations

American College of Chest Physicians (ACCP) published evidenced based clinical practice guidelines for antithrombotic therapy and prevention of thrombosis (Guyatt, et al., 2012; Holbrook, et al., 2012). The guidelines note, “For patients treated with VKAs [vitamin K antagonist] who are motivated and can demonstrate competency in self-management strategies, including the self-testing equipment, we suggest patient self-management rather than usual outpatient INR monitoring (Grade 2B∗).”

The ACCP, as part of the clinical practice guidelines for antithrombotic therapy and prevention of thrombosis, published guidelines for antithrombotic therapy in neonates and children (Monagle, et al., 2012). The guidelines include for children receiving vitamin K antagonists (VKAs), “that INR monitoring with point-of-care monitors be made available where resources make this possible (Grade 2C∗).”

*Grade 2B: Weak recommendation, moderate-quality evidence
Grade 2C: Weak recommendation, low- or very-low-quality evidence

Use Outside of the US

British Committee for Standards in Haematology (BCSH): BCSH guidelines for oral anticoagulation with warfarin include the following recommendation regarding self-testing (Keeling, 2011):

Self-Testing and self-management of warfarin is associated with improved anticoagulant control but may not be suitable for most patients.

National Institute of Health Care and Excellence (NICE): guidelines for self-monitoring coagulation status using point-of-care coagulometers for atrial fibrillation and heart valve disease include the following recommendations (NICE 2014; 2017):

- The CoaguChek XS system is recommended for self-monitoring coagulation status in adults and children on long-term vitamin K antagonist therapy who have atrial fibrillation or heart valve disease if:
 - the person prefers this form of testing and
 - the person or their carer is both physically and cognitively able to self-monitor effectively
- Patients and carers should be trained in the effective use of the CoaguChek XS system and clinicians involved in their care should regularly review their ability to self-monitor.
- Equipment for self-monitoring should be regularly checked using reliable quality control procedures, and by testing patients’ equipment against a healthcare professional’s coagulometer which is checked in line with an external quality assurance scheme. Ensure accurate patient records are kept and shared appropriately.
- For people who may have difficulty with or who are unable to self-monitor, such as children or people with disabilities, their carers should be considered to help with self-monitoring.

Scottish Intercollegiate Guidelines Network (SIGN): Sign guidelines for the prevention and management of venous thromboembolism include the recommendation in the section for INR control (SIGN, 2011/2014): Patient self-testing and self-management supported by a dedicated and well trained anticoagulant team may be considered for selected patients.
Coding/Billing Information

Note: 1) This list of codes may not be all-inclusive.
2) Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement.

Considered Medically Necessary when criteria used to report a prothrombin time home testing system in the applicable policy statements listed above are met:

<table>
<thead>
<tr>
<th>HCPCS Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1399</td>
<td>Durable medical equipment, miscellaneous</td>
</tr>
<tr>
<td>G0248</td>
<td>Demonstration, prior to initiation of home INR monitoring, for patient with either mechanical heart valve(s), chronic atrial fibrillation, or venous thromboembolism who meets Medicare coverage criteria, under the direction of a physician; includes: face-to-face demonstration of use and care of the INR monitor, obtaining at least one blood sample, provision of instructions for reporting home INR test results, and documentation of patient’s ability to perform testing and report results.</td>
</tr>
<tr>
<td>G0249</td>
<td>Provision of test materials and equipment for home INR monitoring of patient with either mechanical heart valve(s), chronic atrial fibrillation, or venous thromboembolism who meets Medicare coverage criteria; includes: provision of materials for use in the home and reporting of test results to physician; testing not occurring more frequently than once a week; testing materials, billing units of service include 4 tests</td>
</tr>
<tr>
<td>G0250</td>
<td>Physician review, interpretation, and patient management of home INR testing for patient with either mechanical heart valve(s), chronic atrial fibrillation, or venous thromboembolism who meets Medicare coverage criteria; testing not occurring more frequently than once a week; billing units of service include 4 tests</td>
</tr>
</tbody>
</table>

References

